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Abstract—Using multiple depth sensors enables us to 

accurately track pedestrians in real environments. Accurate 

pedestrian positions are essential for building an effective 

human-centered cyber world provided by location-based services. 

In particular, ceiling-mounted depth sensors can robustly track 

people in such environments. However, one important problem 

for this approach is the accurate calibration of the absolute 

sensor positions. This problem remains unsolved due to limited 

range and sensor distortions from a distance. Manual calibration 

is complicated and time-consuming, and the existing calibration 

method still has several limitations since it used a pedestrian as a 

movable landmark. Instead of a human landmark, we propose a 

method that uses a mobile robot as a movable and localized 

landmark to calibrate each sensor. We compared the calibration 

performance of the proposed and existing methods and showed 

that the former achieved more accurate calibration for both the 

absolute sensor and tracked pedestrian positions. Our proposed 

method with a mobile robot not only increased the accuracy of 

the calibration processes but also decreased human efforts. 
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I. INTRODUCTION 

Wide-area pedestrian tracking in real environments is 
critical for understanding human activities that provide 
essential knowledge to build an effective human-centered 
cyber world. Various techniques have been proposed, including 
sensor networks with multiple RGB cameras, such laser range 
finders (LRFs) as the Hokuyo UTM series and the Velodyne 
LiDAR series, and such depth sensors as Microsoft Kinect and 
the ASUS Xtion series. One promising approach for wide-area 
pedestrian tracking with a multiple sensor network is using 
depth-based sensors on the ceiling, because this approach is 
robust to occlusions from the bodies of pedestrians. Moreover, 
due to using only distance-based information, privacy issues 

are reduced compared to using RGB cameras [1]. In fact, this 
approach is broadly used to track pedestrians in the following 
real environments: for understanding the use of space by wide-
area pedestrian tracking to analyze and anticipate their 
behaviors [2], planning approaches for pedestrian [3], 
providing such location-based services as distributing flyers [4], 
identifying a specific person using acceleration sensors [5] [6], 
and avoiding crowded situations due to a robot's existence [7].  

One essential problem for such a ceiling-mounted depth 
sensor network system is its calibration, i.e., adjusting  6 DOFs 
(pan, tilt, role, x, y and z) of each sensor to keep consistent 
observations between other sensors. However, common 
calibration methods that use shared observations between 
sensors are difficult to apply in ceiling-mounted depth sensors. 
To the best of our knowledge, only one method has been 
proposed that calibrates ceiling-mounted depth sensors for 
pedestrian tracking [8]. This study used a pedestrian as a 
movable landmark to acquire shared observations between 
sensors to calibrate relative/absolute sensor position 
relationships. But this decision, unfortunately, created several 
limitations even though it achieved good calibration accuracy; 
its limitations are scrutinized in the next section. Instead of 
employing a human landmark, we propose a method that uses a 
mobile robot as both a movable and a localized landmark for 
calibrating a sensor network (Fig. 1).  

The remainder of this paper is organized as follows. 
Section II describes why the common calibration method 
cannot be applied to a ceiling-mounted depth sensor network 
system for pedestrian tracking and the strengths of our 
calibration method. Section III and IV describe our system 
settings for calibration and its mechanism. Section V describes 
the evaluations of our calibration method, and Sections VI and 
VII respectively describe our discussion and conclusion. 
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Fig. 1. Ceiling-mounted depth sensors for pedestrian tracking and a mobile 

robot as a movable and localized landmark for calibrating sensors 

II. PROBLEM DEFINITION 

A. Why Can’t the Common Calibration Method be Applied  

for Ceiling-Mounted Depth Sensors? 

A past study [8] thoroughly summarized the reasons for the 
difficulties of applying such common calibration methods as 
multiple video camera calibrations [9-11] in ceiling-mounted 
depth sensors. We briefly explain them in this section by 
following [8].  

One basic approach for calibrating depth sensors is point 
cloud matching, which uses static objects in the background 
between sensors and resembles approaches like SLAM [12, 13]. 
There are two main reasons why this approach cannot be used 
in ceiling-mounted depth sensors: distorted point cloud 
information and the difficulties of identifying the shared 
features among the sensors. The former reason indicates that 
since ceiling-mounted sensors observe static objects beyond 
their nominal range, many measurements are missing, and 
range distortion occurs [14]. This phenomenon also 
complicates extracting a floor plane, which calibrates the pitch, 
the roll, and the height of the sensors. The latter reason 
indicates that due to a narrow field of view from ceiling-
mounted sensors, identifying the features shared among them is 
often difficult. This problem also complicates marker-based 
calibration, which is another common approach to this problem 
[15], because many markers are necessary to achieve good 
calibration for ceiling-mounted sensors with narrow sensing 
areas. 

Based on these reasons, Glas et al. proposed a calibration 
method that used the observations of a human landmark for 
sensor calibration by integrating LRF and depth sensors [8], 
because the observations of a human head are typically within 
the nominal range of ceiling-mounted depth sensors and thus 
do not suffer from distortion. Furthermore, using LRF sensors 
for calibration enables systems to easily find shared 
observations among sensors. Even though their study 
accurately calibrates ceiling-mounted depth sensors, some 
limitations exist. In the next subsection we describe these 
problems and describe our approach for solving them. 

B. Limitations of Existing Method for Calibrating Ceiling-

Mounted Depth Sensor and Our Approach 

As described above, the past study proposed a method for 
calibrating ceiling-mounted depth sensors by integrating LRF 
and depth sensors. However, its method has several limitations. 
In this section we describe the problems caused by them.  

1) A person needs to walk around to be a movable 

landmark: The past study employed a person as a movable 

landmark to create shared observations among sensors. 

However, it needs additional human resources for calibration, 

especially in wide sensing environments. For example, a past 

study covered about 900 m2 using more than 50 depth sensors, 

but walking this entire environment would be quite strenuous 

[1]. 

2) Unstable height due to walking: This problem is related 

to using a human landmark. The past study used fixed height 

information to calibrate the sensor’s pitch, roll, and height by 

assuming a person’s height does not change during calibration. 

But when a person is walking, her height actually does change. 

Of course, since it is difficult for people to maintain the same 

height while walking, this problem is unavoidable with a 

human landmark.  

3) Must overlap observation areas of the sensors: The 

past study assumed that the coverage area of at least two 

sensors will overlap due to shared observations. In other 

words, its approach failed to calibrate a sensor that does not 

overlap its sensing area with other sensors. To cover this 

problem, it proposed using an LRF to make an overlapped 

sensing area, but this step also increases the total burden to 

prepare a calibration system. 

4) Absolute sensor position calibration: The past study 

used the shared observations among sensors to calibrate their 

positions, but the accuracy of their absolute position 

calibration was strongly influenced by their initial settings. 

Because the shared observations from the human landmark are 

the relative position information based on the initial sensor 

positions, if the initial positions are shifted, the calibration 

results for the absolute sensor position also shifted.  

5) Our approach: As described above, the past study’s 

limitations are based on its use of a human landmark. In this 

study, we solved these limitations with a mobile robot as a 

movable and localized landmark. This approach decrease 

human’s efforts to walk around a sensing area as a human 

landmark for a calibration procedure and provides to the 

calibration system accurate localized position with stable 

height information while moving. Moreover, using a movable 

and localized landmark enables the system to calibrate a 

sensor that does not overlap its sensing area with others, 

because the robot provides global reference points for each 

sensor by moving around. The next section describes the 

details of our calibration system design. 

III. SYSTEM DESIGN 

Figure 2 shows an overview of our entire system, which 
consists of depth sensors, a mobile robot, a human-tracking 
system, and a calibration system.  

A. Depth Sensors 

We installed 10 ASUS Xtion Pro Live 3D range sensors as 
depth sensors for pedestrian tracking in our experiment 
environment (Fig. 3). The sensors were mounted in rows on the 
ceiling at an average height of 2.6 m, covering a 8.2 m long by 
4.5 m wide tracking area. They were attached to the ceiling 
upside-down in rows in alternate directions to minimize 
interference and maximize coverage. 



 

Fig. 2. Overview of our calibration system 

 

Fig. 3. Sensor arrangement and environment in our study  

 

Fig. 4. Estimated positions Pi,t from the sensor i and the robot’s positions Pr,t. 

B. Human-tracking and calibration systems 

We captured the data from depth sensors by five desktop 
PC’s with up to four sensors connected to each PC. These 
sensor data were streamed over a wired network to a Core i5 
PC running tracking software written in Java [1]. In this study, 
these sensors were used to detect the tops of people’s heads, 
not for full-body skeleton tracking (see a previous work for 
details of the tracking algorithm [1]). For this purpose, the 
sensor angles were approximately 30-60 degrees from a 
horizontal degree. The initial sensor positions were calibrated 
by a human. 

The calibration system was also written in Java and 
operated on the same PC. The tracked position data and the 
localized robot’s position data were sent to the software for 
calibration through a wired/wireless network. For 
documentation and repeatability of the results, we conducted 
offline processing, but the software can be used online with 
live data.  

C. Mobile Robot as a Movable and Localized Landmark  

Figure 1 shows our mobile robot, which has a human-sized 
head (at 135 cm height) and its shoulders are tracked as an 
entity by the tracking system. We used an iCart-mini robot as a 

mobile base, which is controlled using a Robot Operation 
System (ROS) framework. For its localization, we used the 
Adaptive Monte Carlo Localization (AMCL) method [16], 
which is a common probabilistic localization algorithm for 
ROS-based mobile robots. In our experimental environment, 
we made a map for localization beforehand, and the measured 
average localization accuracy was in the order of 5 cm. 

IV. CALIBRATION MECHANISM 

A. Overview  

Since we used the robot’s localized position, we can 
calibrate each degree of each sensor one by one, unlike the past 
study. In other words, using a mobile robot as a movable and 
localized landmark, we can directly calibrate the absolute 
positions and the degrees for each sensor. First, the system 
calibrates the pitch, the roll, and z so all the sensors are 
coplanar and then calibrates the yaw, x, and y for all sensors to 
adjust their absolute positions. 

B. Pitch-Roll-Z Calibration  

For calibrating each sensor, the system first processes pitch 
(𝜃) and roll (𝜓) to fit between the planes of the head part 
observed from the sensors and localized from the robot. For the 
pitch and roll calibration, the system conducts a grid search to 
find better values that minimize the standard deviations 
between the observed z positions from the sensors and the 
robot’s z positions through all the data sets. By this process, the 
head plane coincides with the height level of the robot’s 
position (ground-truth) plane. Then the system shifts the z 
positions to match the observed heights with the robot’s height. 
We defined the set positions of sensor i as 

𝑃𝑜𝑠(𝑖) = {𝑃𝑖,0 … 𝑃𝑖,𝑡} ,                                                                                            (1) 

where 𝑃𝑖,𝑡 is the tracked position from sensor i at time t (Fig. 4). 

For a grid search of the pitch and the roll, the system calculates 
the standard deviation of the Euclidean distance of the z axis 
between the translated tracked positions and robot position 
𝑃𝑜𝑠(𝑟). We used a rigid transformation matrix, 𝑻𝜃,𝜓 , which 

rotates the observed position from the sensors with specified 
pitch and roll values to calculate the following standard 
deviations: 

𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒(𝜃𝑖, 𝜓𝑖) = argmin
𝜃∈{𝜃𝑖,𝑚𝑖𝑛…𝜃𝑖,𝑚𝑎𝑥},𝜓∈{𝜓𝑖,𝑚𝑖𝑛…𝜓𝑖,𝑚𝑎𝑥}

𝑍𝐷𝑒𝑣(𝑃𝑜𝑠(𝑖), 𝜃, 𝜓))   (2) 

𝑍𝐷𝑒𝑣(𝑃𝑜𝑠(𝑖), 𝜃, 𝜓) = 𝑆𝑇𝐷𝐸𝑉𝑧(𝑻𝜃,𝜓 ∙ 𝑃𝑜𝑠(𝑖), 𝑃𝑜𝑠(𝑟)) ,                                (3) 

where 𝜃𝑚𝑖𝑛 and 𝜃𝑚𝑎𝑥 , which indicate the searching range for 
sensor i, are between ± 60 degrees from the initial 𝜃 of sensor i 
with 0.01 intervals, 𝜓𝑚𝑖𝑛  and 𝜓𝑚𝑎𝑥, which indicate a searching 
range for sensor i, are between ± 60 degrees from the initial 𝜓 
of sensor i with 0.01 intervals, and 𝑆𝑇𝐷𝐸𝑉𝑧  calculates the 
standard deviation of the Euclidean distance of the z axis 
between two position data sets.  

After calibrating the pitch and the role of each sensor, we 
conducted a grid search for the z positions of each sensor that 
minimized the Euclidean distance of the z axis using rigid 
translation matrix 𝑻𝑧 , which translates the observed position 
from the sensors in the z axis by considering of 𝑻𝜃,𝜓 , and 

robot’s position 𝑃𝑜𝑠(𝑟) as follows:  
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𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒(𝑧𝑖) = argmin
𝑧∈{𝑧𝑖,𝑚𝑖𝑛…𝑧𝑖,𝑚𝑎𝑥}

𝑍𝐷𝑖𝑠𝑡(𝑃𝑜𝑠(𝑖), 𝑧))                                       (4) 

𝑍𝐷𝑖𝑠𝑡(𝑃𝑜𝑠(𝑖), 𝑧) = 𝐷𝑖𝑠𝑡𝑧(𝑻𝒛 ∙ 𝑃𝑜𝑠(𝑖), 𝑃𝑜𝑠(𝑟)) ,                                          (5) 

where 𝑧𝑚𝑖𝑛  and 𝑧𝑚𝑎𝑥  indicate a searching range for sensor i 
between ± 1000 mm from the initial z position of sensor i at 5 
mm intervals and 𝐷𝑖𝑠𝑡𝑧  calculates the Euclidean distance of 
the z axis between the position data sets.  

C. Yaw-X-Y Calibration  

After calibrating the pitch, the roll, and z for each sensor, 
the system processes the yaw (𝜙) and then again calibrates the 
x and y positions by a grid search. For a grid search of the yaw, 
similar to the pitch and roll calibration, the system calculates 
the standard deviation of the Euclidean distance of the x and y 
axes between the translated tracked positions with rigid 
transformation matrix 𝑻𝜙, which rotates the observed position 

from the sensors with specified yaw values, and the robot’s 
position 𝑃𝑜𝑠(𝑟) as follows: 

𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒(𝜙𝑖) = argmin
𝜙∈{𝜙𝑖,𝑚𝑖𝑛…𝜙𝑖,𝑚𝑎𝑥}

𝑋𝑌𝐷𝑒𝑣(𝑃𝑜𝑠(𝑖), 𝜙))                                   (6) 

𝑋𝑌𝐷𝑒𝑣(𝑃𝑜𝑠(𝑖), 𝜙) = 𝑆𝑇𝐷𝐸𝑉𝑥,𝑦(𝑻𝜙 ∙ 𝑃𝑜𝑠(𝑖), 𝑃𝑜𝑠(𝑟)),                                  (7) 

where 𝜙𝑚𝑖𝑛  and 𝜙𝑚𝑎𝑥  indicate a searching range for sensor i 
between ± 60 degrees from the initial 𝜙 of sensor i with 0.01 
intervals and 𝑆𝑇𝐷𝐸𝑉𝑥,𝑦 calculates the standard deviation of the 

Euclidean distance of the x and y axes between the two 
position data sets.  

After calibrating the yaw of each sensor, we conducted a 
grid search for the x and y positions of each sensor that 
minimized the Euclidean distances of the x and y axes using 
rigid translation matrix 𝑻𝑥,𝑦 , which translates the observed 

position from the sensors in the x and y axes and robot’s 
position 𝑃𝑜𝑠(𝑟) as follows:  

𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒(𝑥𝑖 , 𝑦𝑖) = argmin
𝑥∈{𝑥𝑖,𝑚𝑖𝑛…𝑥𝑖,𝑚𝑎𝑥},𝑦∈{𝑦𝑖,𝑚𝑖𝑛…𝑦𝑖,𝑚𝑎𝑥} 

𝑋𝑌𝐷𝑖𝑠𝑡(𝑃𝑜𝑠(𝑖), 𝑥, 𝑦))  (8) 

𝑋𝑌𝐷𝑖𝑠𝑡(𝑃𝑜𝑠(𝑖), 𝑥, 𝑦) = 𝐷𝑖𝑠𝑡𝑥,𝑦(𝑻𝒙,𝒚 ∙ 𝑃𝑜𝑠(𝑖), 𝑃𝑜𝑠(𝑟)),                                (9) 

where 𝑥𝑚𝑖𝑛  and 𝑥𝑚𝑎𝑥  , which indicate a searching range for 
sensor i, are between ± 1000 mm from the initial x position of 
sensor i with 5 mm intervals, 𝑦𝑚𝑖𝑛  and 𝑦𝑚𝑎𝑥  indicate a 
searching range for sensor i between ±  1000 mm from the 
initial y position of sensor i at 5 mm, and 𝐷𝑖𝑠𝑡𝑥,𝑦 calculates a 

Euclidean distance of the x and y axes between the position 
data sets.  

V. EVALUATION 

A. Procedure 

Following the past study, we investigated the performance 
of our proposed calibration system based on two perspectives: 
the sensor’s absolute positions and the detected head positions. 
For each of these evaluation measurements, we compared the 
performances of our proposed method and the alternative 
method that is previously proposed approach [8].  

We only used depth sensors for the calibration in this study 
(no LRFs), and used our mobile robot to record position data 
for evaluating both methods with offline processing as 
described above, to clearly compare the performance of the 

two methods by using robot’s localized position as ground-
truth. The robot needs six minutes to cover all sensing area. 

B. Sensor Position Accuracy 

We again followed the past study’s procedure [8] for sensor 
position accuracy: a laser range measurement device (Leica 
Geosystems, Leica DISTO X310) that measured the location of 
each sensor in an (𝑥, 𝑦, 𝑧) coordinate system relative to the 
room’s walls. In this study, the initial sensor positions for the 
tracking system were calibrated by a human experimenter with 
adequate experience with manual calibration tasks, without 
knowledge about actual measurement information. The 
calibrated sensor positions have 369.39 mm error in average 
compared to the measured sensor positions. The sensor 
positions are well calibrated from a relative position 
relationship perspective and enable a human-tracking system to 
robustly track people. But since these absolute positions were 
slightly moved from the actual sensor positions, a certain 
amount of shifted positions is directly influenced by the above 
position errors. To calibrate the sensor positions, our mobile 
robot moved around the environment once, and its data was 
used to calibrate sensor positions with both methods.  

C. Head-Tracking Accuracy 

Next, we used both the calibrated sensor position data from 
each method to track the head positions. For this purpose, we 
again tracked our mobile robot by our system; the robot moved 
around the same route twice. We used the robot’s localized 
position as the ground-truth positions for the performance 
evaluations, which is another reason why we did not use a 
human landmark for the alternative method. We gathered a 
total of about 4000 paired sensor data for both trials, which are 
sufficient for evaluation purposes because since the past study 
used 360 measurement points at specific positions only. 

D. Results 

Fig. 5 shows the robot’s localized positions (a), the 
observed positions from the tracking system (b) and integrated 
them (c), note that the sensor positions for the tracking system 
were manually calibrated by a human experimenter. Each 
sensor’s observations plotted with different colors in the Fig. 5. 

 Fig. 6 shows the integrated trajectories with the calibrated 
sensor positions by the proposed method (a) and the alternative 
method (b). All of the figures showed that the shapes of the 
observed trajectories from the tracking systems resembled the 
robot’s trajectories, but the absolute positions were shifted 
more than the robot trajectories without the proposed method. 

Table I shows the evaluation results of the sensor position 
calibration and the head-tracking accuracies. We computed the 
root-mean-squared (RMS) error in x, y, z and combined them. 
The results of the sensor position showed that the proposed 
method achieved 100.17 mm error, and the alternative method 
achieved 346.97 mm error on average. The larger errors in the 
alternative method were caused by its initial sensor positions, 
which were calibrated by a human experimenter. The relative 
position relationship between the sensors was well calibrated, 
but the absolute sensor positions slightly shifted compared to 
the real sensor positions, as described above. Therefore its 
position errors influenced the alternative method’s 
performance. On the other hand, our proposed method 



calibrated the absolute sensor positions well regardless of the 
initial sensor positions, because it used the localized position 
from the mobile robot system. Our proposed method showed 
better accuracy than the alternative method. 

The results of the tracked human positions showed that the 
proposed method achieved 135.29 mm error, and the 
alternative method achieved 694.04 mm error in average. The 
larger error of the tracking positions was also caused by the 
initial sensor positions. Even though the human-tracking 
system tracked the people well from relative position 
relationships, the absolute positions were different than the 
actual positions. Again, the proposed method tracked the 
robot’s position well regardless of the errors of the initial 
positions of the sensors.  

Compared to the past study’s evaluation results [8], in our 
setting, the performance of the alternative method is slightly 
inaccurate from the original results for reasons based on its 
sensors’ initial positions and the small overlapping sensing 
area among the sensors. Our proposed method achieved similar 
performance with the past study’s evaluation results using both 
depth and LRF sensors, and this result also indicates its 
promising performance. 

 

     

(a)  Robot’s positions       (b) Observed positions    (c) Integrated both positions 

Fig. 5. Robot’s positions and observed positions from tracking system using 

human-calibrated sensor positions. 

 

   

(a) Proposed method            (b) Alternative method 

Fig. 6. Robot’s positions and observed positions from tracking system  

 

TABLE I.  EVALUATION RESULTS ABOUT SENSOR POSITION AND 

POSITION TRACKING ACCURACIES 

  Alternative  Proposed 

Sensor position accuracy 
(RMS, mm) 

346.96  100.17  

Position tracking accuracy 

(RMS, mm) 
694.04  135.29  

TABLE II.  ADDITIONAL EVALUATION RESULTS 

  Alternative Proposed 

Sensor position accuracy 

(RMS, mm) 
379.53  115.91  

 

E. Additional Evaluation with Non-overlapped Sensors 

The proposed method showed the advantages of the 
calibration performance compared to the past study. In this 
subsection, we conducted an additional evaluation to calibrate 
sensors whose sensing areas do not overlap with other sensors 
to show different advantages of our proposed method 
compared to the alternative method. With a mobile robot as a 
landmark, each sensor can get global reference points from the 
robot’s localized results, and this position information can be 
used for calibration without shared observations with other 
depth sensors.  

In this evaluation, we only used five depth sensors in the 
middle of the room to create a sparse sensing area and again 
calibrated these sensor positions with the alternative and 
proposed methods. We again used our mobile robot to be 
tracked by the system, and it moved around for six minutes 
twice on the same route.  

The performance of this evaluation with the sparse data set 
is shown in Table II. The proposed method’s performance is 
slightly incorrect (about 15 mm) compared to the performance 
that used all of the sensors. But the alternative approach’s 
performance was twice as bad (about 30 mm). These results 
indicate that using a mobile robot to provide global reference 
points is more robustness for calibrating absolute sensor 
positions than just using relative reference points. 

 

VI. DISCUSSION 

A. Implications 

The evaluation results showed the advantages of using a 
mobile robot as a movable and localized landmark instead of a 
pedestrian landmark. The calibrated sensor positions and 
tracking results through our proposed method outperformed the 
alternative method’s results, and the proposed method 
decreased the human efforts to gather sensor data. These 
advantages will be effective with large sensing areas, such as a 
sensor network system that covers an entire shopping mall.  

One possible future work will integrate both an 
environmental human-tracking system and an onboard human-
tracking system of a robot. If the robot’s  tracking system 
estimates the people’s position during calibration, it can be 
used as different global reference points to increase the 



accuracy of the calibration processes. From another perspective, 
if the robot can change its height and send its information to 
the calibration system, z-axis calibration will be more accurate.  

B. Possible Applications 

We used a mobile robot to provide global reference points 
for calibrating a human-tracking system. We believe that such 
a localized landmark can be used for calibrating different kinds 
of systems, such as Wi-Fi or any wireless signal-based systems. 
In fact, a past study previously tried to automatically calibrate a 
ultra-wide-band-tracking system with a mobile robot [17]. 
Mobile robots can be used not only as movable logger devices 
but also as a tool to calibrate several kinds of sensor positions.  

C. Limitations 

This study has several limitations. Since its was conducted 
with our sensing environment and a mobile robot, we need to 
investigate our proposed system’s performance in different 
environments. In particular, in a large environment, the robot’s 
localization error will increase and influence the accuracy of 
the calibration procedures. Moreover, we used a grid search 
approach  to calibrate each sensor due to its simplicity and to 
avoid local minimum problems, but we did not test other 
methods such as MCMC that may realize fast calculation. The 
accuracy of the map information for localizing the robot 
position also influences the accuracy of the calibration 
processes. However, we believe that our setting offers essential 
knowledge for researchers who are interested in autonomous 
calibration by ceiling-mounted depth sensors. 

 

VII. CONCLUSION 

We proposed a method that calibrates with ceiling-mounted 
depth sensors using a mobile robot as a movable and localized 
landmark. This approach enables us to calibrate a human-
tracking system without additional human resources and 
increases the accuracy of the sensor arrangement, which is 
directly related to the usefulness of the system and the accuracy 
of the tracking positions. Our proposed method calibrates each 
degree and the position of each sensor by directly comparing 
the paired positions between the robot’s localized position and 
the detected robot’s position by the tracking system. The 
system calibrated them by minimizing the deviation of the 
Euclidean distance to calibrate the pitch, the roll, and the yaw, 
and minimizing the Euclidean distance of x-y-z for calibrating 
the x, y, and z positions. 

The proposed method achieved higher accuracy than the 
past study from two viewpoints: sensor position accuracy and 
the tracking performance of the head part. The evaluation 
results showed that the proposed method calibrated the sensor 
positions regardless of the initial sensor position errors, unlike 
the past study’s method. An additional evaluation using sparse 
sensor arrangements showed that the proposed system 
calibrated sensors that did not overlap with other depth sensors 
with a robot’s landmark. These evaluation results showed the 
potential of a calibration system that uses a mobile robot. 
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