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Abstract We developed a technique to estimate children’s
social status in classrooms with a social robot. Our approad
observed children’s behaviors using a sensor network.
used depth cameras to track their positions and identifie
them with RGB cameras and exploited the presence of a s
cial robot for the estimations. We specifically observed thd
children’s behavior around the robot, expecting that their in
teractions with it would provide clues for estimating their
social status. We collected data at an actual elementary sch
and observed 70 fifth graders from three different classe
during six lectures for each class period. Our system trackg
the positions of the children 93.4% of the time and correctl
identified them 65.5% of the time in crowded classrooms
that held 28 students. These results were used to estimate the . — . .
. . Ig. 1 Children with high and low social status during a lesson
children’s social status. Our developed system successfully
estimated the children’s social status with 71.4% accuracy.

students to pose questions to robot teachers in class because
asking a robot is easier than asking a human teacher [4].
However, social robots in classroom environments with chil-
dren need to understand the ‘social status’ of the children.
Social status, which broadly refers to a person’s rank within

a particular social structure, can be estimated by occupation
and education [5]. More specifically to classroom contexts,

In the relatively near future, social robots are expected tcéocial status is established through social acceptance and

interact with children in classrooms, including such Sltua'social connections. Popular children rank high in the class-

tions as Ianguage educau.on n clagsrooms [1,2], Ianguggrgom social structure, and less popular or ignored children
teaching by social supportive behavior [3], and encouraging, ., o [6] (Fig. 1)
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Social status also influences the academic outcomes &or instance, Choudhury et al. developed a wearable de-
children. Children with low social status tend to have lessvice called a sociometer that records the proximity events
successful academic performances [10]. The transformatioof its carriers who were near each other from which they es-
of low social status into low academic performance is probtimated people’s social networks [20]. Similarly, children’s
ably due to reduced motivation to succeed [11]. friendships in a classroom were estimated by proximity in-

We speculate that future social robots will be used fofformation that was observed with RFID tags around an in-
interventions in the environments of children. The literatureteractive robot [21]. Although these studies revealed the im-
has identified and discussed the effect of intervention. Foportance of observing proximity information, we found that
instance, the academic performance of children with lowt is difficult for children to constantly carry/wear a wearable
social status was improved by training their academic andevice in school.
social skills [12]. To reduce bullying, a few different inter- Without requiring that any device be carried, we can still
ventions were considered, e.g., training non-bullying childidentify individuals from their faces [22]. Nonetheless, face-
dren with high-status to intervene in bullying situations withbased identification is limited because it can only identify
high-status bullies or helping low social status children acpeople whose frontal or side face is observed by a camera.
quire better social skills and encouraging them to build betNathan et al. proposed a shape-based identification method
ter social connections [8]. If a social robot were to under{23], but it would also probably perform poorly in such a
stand each child’s social status, it could be used during suatrowded situation as a school environment. Thus, face-based
interventions to improve the position of low social statusidentification alone does not adequately perceive people’s
children. The capability to understand social status is a critbehaviors. Instead, researchers have explored various tech-
ical step for such social robots. nigues to combine tracking techniques with person identifi-

cation (e.g., [24]).
Information from cameras has also been used for estima-

2 RELATED WORKS tion. For instqnce, Aran et al._ obseryed such nonverbal fea-
tures as motion energy (motion regions on the upper torso
2 1 Social Robots for Children and Classrooms including arm and head motions) and speaking turns in a

small group meeting to estimate personality [25]. Hung et

Previous studies unveiled the possibility of using social robofd Proposed a method to identify the dominant person in a
to support the social lives of children. For instance, Woods egroup meeting from such features as speaking length and op-
al. explored how differently bullied children tell stories fea- tical flow [26]. Even though many previous works addressed
turing a robot than children who haven't been bullied [13].9roup-meeting situations, we focus on classroom situations.
Bethel et al. revealed that as an interviewer, a robot can behe difficulty is that children often move around; thus ob-
used to investigate sensitive events [14], and Tanaka et &erving their gestures/motions is complicated (since they of-
concluded that a robot can be accepted as a close peer 6t move beyond the camera view and do not necessarily
children [15]. Belpaeme et al. explored whether a robot'dace the camera), and the room is too noisy (when they are
adaptation to children’s characteristics effectively contribute®lowed to talk) to apply techniques that analyze their audi-
to teaching mathematics [16]. Komatsubara et al. investlOry interactions.
gated whether a social robot increased science understand- Unfortunately, little is known about how to retrieve use-
ing in classrooms [17] and whether using pointing gesture§J| information from children’s behavior in a classroom. In
encourage children to ask questions [18]. Shiomi et al. incontrast, our work, which pioneers the challenge of retriev-
vestigated whether a social robot stimulated the science ciPd information from classroom behavior, is built upon rather
riosity of children through a long-term interaction [19]. robust tracking and identification techniques. We describe
However, until now, no research has revealed how to dehe useful features we retrieved from an actual elementary
velop the capability of estimating social status, even thougﬁ0h00| science classroom and the techniques that estimated
the literature suggests that social robots will eventually apchildren’s social status.
pear in classrooms.

3 SYSTEM DESIGN
2.2 Understanding People in Group Setting 3.1 Expected Relation between Behavior and Social Status

To the best of our knowledge, no previous works have adObserving children’s social behaviors is critical to their so-
dressed techniques that estimate social status. Some tedal status. For example, children with high social status tend
nigues have estimated people’s relationships (e.g., friendsp be friendly, interactive, and helpful [6], but children with

although participants were required to use wearable sensotsw social status tend to spend too much time alone [27];
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children with high social status spend more time with othe|_| Observation system |_ _| Estimation system
children. Since students with high social status often hav

Integration

high social power [28], they can more easily ask for help

when facing a difficult problem during a lecture because[ People ] [ Face ]
tracking

they move around more, and they may more frequently us X identh}cation
novel things like a social robot because they stay around ( Depth sensor m [ RGB camera ﬂ
?

more.
i CRCT L

3.2 Technical Requirements

Fig. 2 System overview
Our approach is to understand children through observa-
tions. We considered the following requirements: Q

Non-wearable:Although previous studies indicated the pos- ( ) O (OQ
sible use of wearable sensors [20, 21, 29-31], children ai % ~g§ B) D O D Camera

typically prohibited from bringing smartphones or other de- O) Depth sensor (Kinect)
b Doo
10

vices to elementary schools. Thus, observation must be doi
with non-wearable devices, i.e., with such sensors as can
eras.

Fig. 3 Sensor arrangement in classroom

Tracking and identification: The behaviors described in
Section 3.1 can be extracted if we can identify children an
continuously estimate their positions. Without wearable se
sors, a possible approach for person identification is with
camera, i.e., face identification (face recognition). Howeve
face identification can only be done when a frontal/side fac
is visible to the camera; this is not always the case, sinc

children often change their face direction or move aroun [

il

S_PCh_Cases require a good combination of tracking and Iderﬁg. 4 Depth image with estimated head positions (left) and overall
tification systems. tracking results (right)
Social robot in classroomsWe installed a robot that is de-

signed to encourage self-learning. In our scheme, robots thit
help learning will be used in classrooms. Interaction with
them will provide clues for an estimation system by a robot4
that actively influences the children’s behavior.

OBSERVATION SYSTEM
.1 People-Tracking

We employed a people-tracking algorithm using depth sen-
sors [32] and attached depth cameras to the ceiling to esti-
mate the people’s positions and heights based on head and
shoulder shape detection. With our settings, the tracking sys-
3.3 Overall System Design tem follows the positions of all the people in the area at 30
Hz with accuracy of about 30 cm. This system has robust-
Figure 2 illustrates the architecture of our developed systemess toward changes of color information due to different
whose design is based on the above considerations. Our otlething because it uses depth information. Since the depth
servation system (Section 4) estimates children’s positionsamera sees from the top down, it is also robust for crowded
by integrating both people-tracking and face-identificatiorsituations.
systems, while a social robot actively interacts with children ~ We arranged the locations of the depth sensors to effi-
to support self-learning. When children’s faces are identiciently cover the whole space. A sensor (Kinect, with & 57
fied, their IDs are associated to the tracked entity in thdworizontal and 43vertical field of view (FOV)) covers ap-
tracking system. The estimation system (Section 5) judgegrox. 4 m * 3 m of the space when attached to the ceiling
children’s social status based on the features extracted froat 2750 mm. 24 depth sensors covered an 8 by 16 m area of
their positions. the room (Fig. 3). Fig. 4 shows a depth image from a sensor
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Fig. 5 Camera arrangement for face identification

and the classroom’s tracking result. In this room four to fiv dUpdate ](—[ Evaluate
X e atabase performance
children are sitting around each desk, and the system trackc ..
them well in such a crowded situation. Fig. 6 Flow of finding best matches of registered images
e Matching threshold
4.2 Person Identification Safe margin

For person identification, we employed a face-identificatior
approach using RGB cameras and commercially availabl
software (Omron, OKAO Vision [22]). g

We designed the camera configurations to improve th| \ /N
balance between the number of cameras and the chance L !
face identification. OKAO Vision requires a view of a face — \/
in a frontal direction within 20 (pitch) and 38 (yaw). The ) ) . .
school requested that cameras not obstruct classroom actll\:/'g' 7 Matching 3D people-tracking and face recognition
ities, e.g., no cameras on the desks facing individuals. Here
we assume that the children will at some point look at theyhen multiple people are visible in a camera view, finding
front of the classroom, where the teacher usually stands, anfle correspondence of both positions is complicated. For
so we only aimed one camera (Logicool, C920t, 7ér-  our purpose we believe that failing to make an association
izontal and 43.6vertical FOV) at each desk, which should js preferable to making an incorrect association. To prevent
capture all of the children at the desk (Fig. 5). such associations, we defined a safe margin for integration.

We also developed software to facilitate face registraAn association is only applied when an identified face and a
tion that extracts the face regions from images and comyracked-head position are within a matching threshold and
pares them with the faces registered in the database. Singige head position is outside of the safe margin of all the
face images vary depending on angles and facial expresther tracked-head positions (Fig. 7). We empirically con-
sions, registering many face images with different angles ifigured the threshold and safe margin to be 20 and 30 cm
a key factor for accurate face identification. Therefore, wehorizontally, which is twice the vertical tolerance because
implemented a function to semi-automatically find the besthe tracking errors were larger in that direction.
set of face images for registration. After processing the face
detection and identification processes, a coder labeled the
correct IDs for the face images and registered new individ5 ESTIMATION SYSTEM
uals using the stored face images. After manual coding, the
system optimized the face-identification performances usingVe used the tracking results (Section 4) to estimate the chil-
the new registered images by testing the influence of regigdren’s social status. From them, we computed various be-
tering each image over a randomly selected subsample bfvioral features (discussed in Section 3), which are used for
images from the known yet still unrecognizable face imagesnachine learning with a Support Vector Machine (SVM).
of the same individual. We continued these processes to op-
timize the face-identification system until the performance
became saturated (Fig. 6). 5.1 Classroom Behavior Features

Faces detected by camera

We computed the following features about children’s class-
4.3 Tracking and Identification Integration room behaviors:

Time spent alone:Since less popular children (low social
We next describe the process that integrates the tracking asthtus) tend to spend more time alone than children with
identification results. Head positions are tracked in 3D abhigh social status (e.qg., [27]), we measured the ratio of such
solute coordinates, and faces are identified in the 2D cantimes. For each childand each timg we computed whether
era view. Since each suffers from some positioning errorsany other children are within a thresholg(y) of this child
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and defined it as follows: 5.2 Robot-related Features

, _ 1 b
Timespentalong) = ————

. Z (isAlondi,t)-At) (1)  Since we believe that children’s interaction with the robot
Trackedi) &, will provide additional clues for an estimation system, we
added the following features:
isAlondi.t) = { 1 if(d(p('i’t)7 p(j,t)) > Dry forall j(j #i)) Time spent argunq the robqt: Soc.ial statL_Js is closely con-
0 otherwise nected to social hierarchy, in which a high rank denotes a
2) higher priority access to resources [28]. When a robot is
novel, since many children want access to it (e.g., [1]), a
whereTrackedi) returns the total tracking time of child  somewhat competitive situation exists where only a limited
At is the time step (33.3 msec) for this calculatignii,t)  number of children can actually secure access to it. Children
is the x-y position of child, andd(a,b) is the Euclidean with high social status tend to gain more access than chil-
distance between x-y positiorssandb. Based on proxemics dren with low social status. Therefore, we measured the ra-
knowledge [33], we used multiple thresholds f@fy: 500 tio of the time that children spent around the robot. For each
mm as an intimate space to interact with friendly people andhild and each moment, we computed whether the child was
1200 mm as the personal space to collaborative with othersvithin a distance thresholdg 1+) from the robot and de-
Number of surrounding people: Since children with high  fined this feature as:
soi:ial status tepd t;) be h[e6zl]pful, frie.ndlyi,har;dt rilnterECtiV& theyg pent time around the robid} = ©
get many nominations [6], meaning that they have many ~ 1 th : .
friends or people who like them. Thus, they spend time with 'ac<ed?) 32, (1T(A(P(1,1), PR ) < Drrh)-AL),
such individuals and well work with others in group-work wherep(r,t) is the robot’s x-y position. In the calculation of
activities. To capture this idea, we measured the averag@e robot-related features, based on proxemics knowledge
number of surrounding people. For each child and each md33], we used multiple thresholds f&k t4: 500 mm as the
ment, we computed the number of other people within a disintimate space for friendly people, 1200 mm as the personal
tance thresholddt ) from him/her and defined this feature space for familiar people, and 3500 mm as the social space
as: for acquaintances.
Number of surrounding peop(ié = Nymber pf surro_undi.ng people When_around the robot:
L__sh s (if(d(p(i,t),p(j.t)) < Drn)). (3) Since chlld_ren with high social status interact with the robot
Tracked() £1=l0 2=V} and their friends or people who like them, we measured the
Moving distance outside personal desk aredn classroom average number of surrounding people who lingered around
activities, children were split into groups and assigned tdhe robot. For each child and each moment, we computed the
desks. While children often worked within the area of theirnumber of other people within a distance thresh@ig {n)
desk, sometimes they moved around in the classroom. Sindem him/her and defined this feature as:
chlldreq with h!gh social .status interact \{Vl.th others more imof surrounding peoplewhen being around the raiot
than children with low social status, they visited people out- " _, o SN
. . - . 2ty 3 j_y;(@roundRoboti, j t)-if (d(p(it),p(jt)) <DrTH))
side their own desks more frequently (within their own desk= Trackedi)
area, they moved for the activity that was assigned to their (7)
group). We measured the average moving distance outside o ) ]
their desks. Here a child is judged to be outside of her ow/@foundRobati, j,t) = nearRobofi,t) - nearRobotj,t) (8)
desk areaifthe di§tange from the desk exceeds arangethr%sgérRoboﬂ,t) _ { 1 if(d(p(_i,t), p(r,t)) < Srn) 9)
old (Rrn) and defined it as follows: 0 otherwise

We setSry as the threshold distance to 3500 mm, which
4)  represents the social space from the robot.

Moving distance Outside) = (
Traciec(i) Eglto(iSOUtSidéLt) : d(p(i,t), p(i7t +AS)))

isOutsidei,t) = {é ic:t(hin;\(/\fi)gét%desm)) >Rri)  (5) 5.3 Classification System

wheredesKi) is the rectangular area of chilé assigned We used an SVM with a Radial Basis Function (RBF) kernel

desk anddy, is the shortest Manhattan distance between théo classify social status as high or low. We trained the clas-
position and the rectangular area on the x-y plane (y is thsifiers using the data obtained in the data collection (Section
classroom’s long side). We sty to 300 mm for situations  6) and sought the best features from all the combinations of
where children change their own positions around the desteatures and parameter C for SVM by a grid search using
and 600 mm for situations where they go to other desks. W&0-fold cross validations. For implementation, we used the
setAsto 500 msec to eliminate noise effects in the trackingscikit-learn library [34].
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6 DATA COLLECTION

6.1 Environments

Data collection was conducted in an elementary school’s sc . 3
ence room (Fig. 3) that is used for lectures about twice a  (a) Lecture (b) Group-work (c) Free-time
week per class. Four to five children sit around each deskig. g children's behavior across different phases

(six desks from the front were used). The lessons lasted 45

minutes, followed by a five to twenty minute free period.
part, students formed groups based on their seat locations

and conducted an experiment or worked with instruments.
6.2 Participants For instance, one time they changed the weight and the ini-
tial angle of a pendulum to study its characteristics.
The science rooms we observed were comprised of three
classes of 5th graders with 84 students (14 girls and 14 boys
in each class). Their average height was 147.2 cm (S.D. wds5 Robot
9.4). The experimental protocol was approved by our in-
stitutional review board (reference number 13-502-8) andVe used a humanoid robot designed for human interaction
the school administrators. All the children and their par-to elicitanthropomorphic expectations. It has two arms (each
ents signed consent forms and agreed to have their behaviaith 4 degrees of freedom (DOF)), a head (3 DOFs), and is
recorded. 120 cm tall. It has cameras and a speaker on its head with a
Pioneer 3DX mobile base.
The robot interacted with children by quiz-style conver-
6.3 Sociometry Questionnaires sations about recent lessons. It started the interactions by
greeting them by name and then asked a multiple choice
We distributed sociometry questionnaires before the studguestion that was related to their science lessdfisat does
and asked the children to list five friends. From their an-a fetus receive through its umbilical cord? Please choose
swers, we computed the index of sociometric status scorgvo answers: 1) oxygen, 2) blood, 3) nutrition, or 4) water.
(ISSS) as the social status of each child in each class witih addition, it answered science questions related to recent

the following previous definition [35]: lectures. The contents of the 40 quizzes were prepared from
1 N N lecture materials. Through quizzes and answers to science

ISSS= = (—ominated | Tmutualy (10)  questions, the robot was designed to help children review
2 Np - 1 Nmax

recent lessons and deepen their comprehension.

where NpominatediS the number of nominations (i.e., other ~ Therobot, which generally operated autonomously, iden-
children listed this child as a friendN, is the number of tified the locations of the children from the people-tracking
children in the clasNmytual is the number of mutual nom- infrastructure (Section 4.1) and oriented its gaze direction to
inations (i.e., other children who listed this child, and thoseeach child individually while it spoke. It identified children
listed by this child), andNmax is the maximum number of by its own camera, which enabled it to refer to the children
nominations (i.e., five in our study). If this value is high, theby name. However, since speech recognition remains too
child has high social status, i.e., the selection of low/highdifficult in such noisy environments, an operator assumed
social status contains no subjective input from teachers dhat function’s control. When a relevant question to the lec-
peers. ture topics was asked, the operator controlled the robot to
provide information. When typical questions were asked, he
selected from pre-implemented behaviors. Otherwise, he di-
6.4 Procedure rectly typed utterances to answer the questions.
Further analysis of a robot’s effect on children’s learn-
Each class had six lessons during the study. The room réng was previously reported [17]. Some of the children who
mained available before and after the science lessons. Amoagtively interacted successfully learned through interaction
the six lessons, five free-time sessions included the robofyith the robot.
which was available only during free-times before/after lessons
and did not engage in interaction during lessons. A lesson
usually included two parts: lecture and group-work. During6.6 Obtained Dataset
lectures, the teacher usually spoke in the front of the class
while students sat and listened quietly. In the group-workBehavioral Data
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The observed children’s behaviors were quite differen
across the three phases: lecture, group-work, and free-tim
During lectures (Fig. 8(a)), the children sat at their desks
listened to the teachers, and stayed still. Since the lectui§
phase provided little information, we did not use any date®
from it.

During group-work (Fig. 8(b)), the children were usually
at their desks, engaging in experiments. Some worked along;

others worked together. Some children visited other desks tBabIe 1 Performance of SVM classifiers

Fig. 9 Difficult tracking and identification moments

check the progress of different groups or to ask questions. Features Performance
During free-time (Fig. 8(c)), children were often with — opy_with-robot 61.4%

their friends. Before the science lessons, many were talking Without-robot 61.4%

with friends, but some just sat at their desks and waited for Proposed method 71.4%

the lessons to start. After the science lessons, some children

gathered around the robot and interacted with it, while others _ _ _ ) )
chatted with friends or returned to their homerooms. identification remains lost until the face is seen again. This

We separated the data based on the above definitio®the main source of the gap between the time being tracked
of the phases and used both the group-work and free-tim@3.3%) and identified (65.5%).

phases for our estimations. We obtained 235 minutes of group-Figure 9 (right) shows another case where the tracking
work and 112 minutes of free-time data. system failed. Here it recognized the faces of two boys, but

Questionnaire Data their bodies were so close that it only identified one of them.

We got 70 valid data samples; some children were abseh? such moments, tracking was unstable, and identifications
when the questionnaires were given. We categorized thef¥ere likely to fail. Nevertheless, even though such situations
social status abigh or low using the obtained 1SSS scores Often occurred, our system was able to track and identify
and used the average scores as the cutoff pointlovhelass ~ them for our purpose: estimating social status.
included children whose scores were below average, and the
high class included children whose scores were above it. 3

children were categorized in thew class and 36 in thkigh 471'2 Evaluation of Estimation System

class. Since we expect that the robot’s presence will add estimation
clues, we evaluated the contribution of tblassroom be-

7 EVALUATION havior featuregSection 5.1) and thebot-related features
(Section 5.2) as well as the performances of the following

7.1 Evaluation of Observation System three conditions:

Without-robot: The only feature vector for SVM was the
We evaluated the correct tracking and identification ratioglassroom behavior featur¢Section 5.1) that estimate how
of the children during the lessons. A human coder watchethe system worked without a robot in the classroom.
five minutes of video of the group-work phase result, identi-Only-with-robot: The only feature vector for SVM was the
fied the children, and checked whether each child had beanbot-related feature¢Section 5.2) that estimate how the
monitored by the tracking system and whether his/her id wasystem worked if the estimation was done only with the in-
correctly associated. formation observed from the robot (i.e., only the children’s

The tracking system tracked children 93.3% of the timebehavior around it).
(on average, 279.8 sec out of 300). Each child was correctlgoth (proposed): All the features reported in Sections 5.1
identified 65.5% of the time (196.5 sec on average). Awrongnd 5.2 were used. This is our proposed system.
ID was associated 4.9% of the time (14.8 sec). For the reor all the conditions, except for the above features, we used
maining 22.9%, no ID was associated (68.6 sec). the system reported in Section 5 with the same training and
We consider this result good, since the classroom sittuning procedures reported in Section 5.3.

uation is very complex. For instance, Fig. 9 (left) shows Table 1 shows the result. Our proposed system, which
scenes where the tracking system failed to track some of theuccessfully estimated children’s social status with 71.4%
children who sometimes gathered around a desk to obseraecuracy, outperformed the other two conditions. The per-
materials for the group-work experiment. In such situationsformances of the without-robot and only-with-robot meth-
they were huddled too closely together to be separated, armdis were both 61.4% and 61.4%. We conducted a paired
some were occluded by others. Note that once tracking istest to compare the performances of the cross validation re-
lost, even though the system recovers from the error, thsults amongthe proposed method and each alternative method.
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Table 2 Confusion matrix

Estimation Estimation Estimation
high | low high | low high | low
Ground{high| 28 8 23 13 29 7
truth |low| 19 15 14 20 13 21

(a) Only-with-  (b) Without- (c) Proposed
robot robot method

and only-with-robot methods (p=.046) as well as the pro-
posed and without-robot methods (p=.001).

Table 2 shows a confusion matrix whose details we fur-
ther analyzed. If we compare thoposedand only-with-
robot conditions, the main difference is the estimation of
children with low social status, whose result resembled the
result of children with high social status. That is, our pro-
posed method more successfully estimated children with low }§
social status than thenly-with-robotcondition. In fact, many
of them (with whom the proposed model was successful but
not theonly-with-robo} were children who were alone dur-
ing free-time relatively far from the robot.

If we compare theproposedand without-robotcondi- Fig. 12 Low social status child alone and watching others play
tions, the main difference is their estimation of children with
high social status; the result resembled the result of the chil-
dren with low social status. In fact, many children with high @

Fig. 11 High social status child formed a group

quently interacted with the robot. Because the proposed mett )

used '.nformat'on about the children’s beh_a_'v'or aroupd th?—ig. 13 Low social status child looking at a group from a distance

robot, it outperformed theithout-robotcondition, showing

that interaction with the robot provided an additional clue

for estimation. essarily been socially rejected; these results only identified
that such tendencies of children’s behaviors are related to so-
cial status. In the following subsections, we retrieved scenes

7.3 Analysis of Contributing Features based on these contributing features.

We also investigated which features were important for the

estimation by eliminating each one by one and checking thg OBSERVATIONS

performances. We identified high contributions fradime

spent alon&uring free-time antime spent around the robot  The evaluation in Section 7.2 revealed that bothithelass
When we removed them, the estimation performance desehaviorand thebehavior around the robatere important
creased by more than 10%. We investigated whether chiinformation for estimation. Here we further scrutinize the
dren with low social status spent more time alone (avg. valueelevant behaviors of some of the children.

from Eq. 1, high: 0.642, S.D. 0.141, low: 0.718, S.D. 0.144)

and less time around the robot (avg. value from Eq. 9, high:

0.014, S.D. 0.030, low: 0.007, S.D. 0.014) than children with8.1 In-class Behavior Related to Social Status

high social status. A t-test showed a significant main ef-

fect in time spent alon€t(1,68)=2.244,p=.028), but it did Figure 10 shows children with high social status during free-
not show a significant main effect time spent around the time who often spent time with friends. After the end of
robot(t(1,68)=1.166, p=.247). Children with high social sta-each lecture, they gathered and talked. Fig. 11 shows an-
tus tended to be with friends or others, and such observatiormgher child with high social status. During his free-time, he
as togetherness (or aloneness) were keys for successful @ssited his friends to his desk to play, where many gathered.
timation. On the other hand, we need to carefully interpret In contrast, children with low social status were less fre-
these results. Even though a child is alone, she hasn't nequently with others and sometimes were alone. Fig. 1 shows
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In contrast, children with low social status spent less
time with the robot. Fig. 16 shows a child with low social
status who seemed to want to interact with other children
and the robot, but he only moved around a group of people.
Fig. 17 also shows a child with low social status who was
unable to participate. He looked at the group, approached it
(Fig. 17, left), but gave up (Fig. 17, right).

9 DISCUSSION

9.1 Contribution of Observation System

Since most previous studies relied on human observations,
children’s classroom behavior has not been scrutinized. One
Fig. 15 High social status child repeatedly interacted with robot reason is the difficulty of observing it in detail by sensors.
Children often move around and stay very close to each
other. Our study faced this difficulty using a sensor network
that combined depth and RGB cameras. Our system tracked
children 93.3% of the time and identified them 65.5% of the
time. Even if room exists for better performance, our study
identified one important step for understanding children in a
Fig. 16 Low social status child who seemingly longs to join a group classroom with sensor-based observation.

around robot Perhaps the information from a system with only 65.5%
accuracy is too noisy for estimation. However, note that 65.5%
accuracy does not necessarily imply that the remaining 34.5%
of the information was inaccurate. Only 4.9% of such iden-
tification was inaccurate, and situations where the target per-
son was simply not identified comprised the remaining 29.6%,
meaning that information is missing for the majority of these
moments. If our observations continued for a long enough
period, the loss of part of the observations would not be a
big problem for the estimations. When a child was correctly
scenes where children with low social status were isolateilentified, the features (Section 5) were correctly computed
and returning back to their seats alone, while other childreif other people were correctly tracked (with 93.3% accu-
had already left with friends or were talking with others. Fig.racy), even without being identified. We just need such in-
12 shows another child with low social status. During freeformation as the number of other people. Nevertheless, we
time while other children were playing together, he stayedelieve that our estimation is based on quite accurate fea-
at his desk alone and watched them. Fig. 13 shows anothaiures.

child with low social status. Once during free-time, he ap-

proached a group of children who were playing together

without joining them and stayed alone at a distance.

(a) 2"%ecture (b) 4Mlecture

Fig. 17 Low social status child who gave up joining a group

9.2 Contribution of Estimation of Social Status

Our method estimated social status with 71.4% accuracy.
8.2 Behavior around the Robot Given that the chance rate is 50%, perhaps this result is

not very good. However, we believe that our achievement
Children with high social status spent much more time arounsl solid because the estimation of social status is not simple.
the robot than children with low social status. Fig. 14 showsTo the best of our knowledge, since no previous work has au-
a child with high social status who is interacting with the tomatically estimated social status, we are unable to provide
robot. In this situation, she and her friend interacted witha simple comparison of performances. As a reference, look-
it for 545 seconds. Fig. 15 shows another child with highing at similar problems related to the estimations of human
social status. Every day she approached the robot and rattributions might be fruitful. Although neither in a class-
peatedly interacted with it with her friends. room nor about social status, some studies addressed the es-
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timation of personality, where 2-class classifiers resulted in 9.4 Alternative Approaches

estimation results of personality with around 70% accuracy.

For example, Mohammadi et al. developed a method that rdn this section, we compare the advantages and disadvan-
sulted in 60-72% accuracy [31]. Since observing classroontages of alternative approaches to estimate social status and
behavior is not easy, around 70% accuracy is a solid achievéracking and identifying children in classrooms with our pro-
ment for our initial challenge of the estimation of social sta-posed method.

tus. The first topic is an alternative approach to estimate so-
The comparison in Section 7 revealed that the observasial status. One possible method is to rate friendships and
tion of the children interactions with the robot provided use-compute social status from them with Eq. 10, because we
ful clues for estimation. We found that the active interac-can accurately estimate friendships by observing proximity
tion caused by the social robot increased its understandingvents (who is often with whom) [20, 21], when children’s
of the children’s social status. As far as observing a coubehaviors are accurately observed with observation systems.
ple of early repeated interactions, children with high sociaHowever, the accurate estimation of friendships or nomina-
status gathered around the robot with friends, while chiltions (who likes whom) is not easy. For instance, we imple-
dren with low social status less frequently participated inmented a method [21] that identified proximity events as the
interactions. Note that we need to carefully consider hownoment when two children were within a certain distance,
to treat observations from longer term interactions becausghich we set to 2000 mm because it yielded the best per-
the robot’s novelty eventually wears off and the interactionformance. However, only 14.7% of the nominations were
of children with high/low social status will probably change correctly identified, and 11.5% false-positive nominations
over time. were estimated. Because the estimated nominations were
If we conducted social status estimations by separatingnaccurate, the estimated social status with Eq. 10 poorly
the data for each of the three classes, the performances bvatched the ground-truth. The 2-class classification accu-
came 65.7%, 63.7%, and 61.3%. This performance is relaacy was only 40.0%, which is also poor and below the chance
tively low compared to using all of the class data. We thoughtate, possibly because the information from the proximity
that separating the data for each class might allow us to usgvents is rather incorrect in our system. When our system
just a relatively small amount of data and lower the estimafails to identify a child’s friend during proximity events, it
tion performance. mistakenly assumes that he/she is not with this friend.
The second topic is an alternative sensing approach. In
this study we used an environmental sensor to estimate so-
o cial status instead of such wearable devices as Bluetooth
9.3 Implications bracelets due to several technical requirements. Here we dis-
cuss the possibility of using wearable devices for this pur-
This study describes a promising way of estimating chil-pase. In the context of academic trials, even though asking
dren’s social status. Thus, we should be able to develop @jigren to wear devices might be allowed in some circum-
robot that supports children’s activities. For example, sinc&ances, such permission is unusual and often denied. More-
children with low social status are often alone, a social robogyer. asking children to always wear such bracelets requires
might encourage them to interact with others. We observeg sjgnificant amount of human resources because this is con-
that when a social robot called a child by name, other Ch"trary to what children naturally do. Actually we did expe-
dren made space for him/her to join and they interacted tdjence some difficulties in our school environment through
gether. Even with 71.4% estimation accuracy, a robot coulgiscyssions with the school principal. He (and his teachers)
encourage children who are estimated to have low social stgyorried that the preparation time for such devices might
tus to interact with it. With this approach, even though estiarode into class time. During long-term experiments, the
mation failure does not cause serious negative results, thgaq of wearing/removing such devices during every class
robot could encourage children with low social status to eng,oyid obviously increase. Also, since children might forget
gage with other children. to carry or wear them, opportunities to gather whole data
would decrease in the experimental period. Another concern

! Personality and social status are clearly different constructs (cofg that using so many wireless devices might deleteriously

cepts) in psychology. Social status is closely connected to social prefer- fluence a school’s Wi-Ei environments. which is also re-
ence (i.e., whether everyone likes him/her), and hence it tends to be e ’

consequence of individual capability, such as social competence [3@ted to the management’s view of the elementary school.

or the tendency to engage in aggressive behavior [6]. For example, a Fyrthermore, a sensor array approach provides more use-
child with an extroverted personality is not necessarily popular ang, | intormation than Bluetooth-based wearable sensors: the
might be perceived as annoying or aggressive if he behaves badly; a e . .

shy introverted child might be liked if she is socially competent, e.g.,accuracy of positioning children. A wearable device enables

helpful and cooperative. estimates of relatively rough position relationships among
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children, but the accuracy of wireless-based positioning fallgsmall amount of data. However, additional data and analysis
especially in complex and crowded classroom environmentsire needed to generalize the proposed method’s validity.
Unstable wireless signals might cause misunderstanding aboutVe used proxemics knowledge to extract features such
estimating the relative position relationships among childreras personal distance, even though a previous study reported
Also, itis difficult to estimate the absolute positions of manythat children define and use personal space differently than
users accurately with such wearable sensors under about l@dults [40]. On the other hand, several studies reported that
m scale environments. the distances between children and robots are consistent with
the social distance chosen by adults [41-43]. Therefore, we
investigated the effects of children’s personal space by chang-
ing the thresholdry) for Egs. (2) and (3). Since the chil-
Several limitations exist in our method that estimates the soOlrens ages were 11 to 12 in this study, we employed 110

. . . . T cm as the interaction distance based on [40]. (about 90%
cial status of children by observing their activities in class-
om 120 cm). After recalculation of the performance, we

rooms. For estimations, we used SVM because it is a Ieati

ound that the modified interaction distance did not change
ing algorithm for classification problems and performs rea-

the performance.

sonably well. Using different classification methods might .
y 9 9 Moreover, as an additional test, we employed 40 cm as

provide different performances. But in this study, we fo-
an intimate distance; we note that the paper only investi-
cused on whether the social status of children can be es

ated the difference of interaction distance with children,
timated through autonomously extracted features and co
. . ) L "~ and therefore we used the same ratio for the modified inti-
bined the children’s activities in both group-work/free-time

mate distance, which is 90% of 45 cm, based on the orig-
to improve the performances rather than comparing the per-
inal intimate distance definition. But after recalculating the
formance with different classification methods.

Even though we did not use any manually annotateé)erformance, we found that the modified intimate distance

I 0, -
identification data to estimate social status, such an approa%r'Ft slightly decreased the performance (68.3%). The mod

ed intimate distance is not based on the collected data
might be useful when the number of features is limited. How.,
from a previous paper [40], as described above. One pos-
ever, testing all combinations manually with many features
sible explanation is that in this grade the intimate distance
would be difficult. Moreover, the system needs to automat®
between adults and children is similar. Since the accuracy
ically recognize informative features; if they are only rec-
; L - of our human tracking system was about 30 cm, the recal-
ognized by human capabilities, it would be difficult to use .
. : - : .. culated performance was influenced by these factors. Thus,
the system. This approach might have difficulty identify- . ) .
e must carefully interpret the achieved performance of this
ing what features/combinations are best for this purpose, bu
study, which is based on the proxemics knowledge of adults,
building a system with current technologies would be appros
but we believe that our proposed method’s achieved perfor-

priate.
We estimated social status with ISSS, which is a Commance has adequate impact even if we only use the prox
emics knowledge of adults.

mon metric in Japan to investigate social status in children-
related researches [37—39]. To the best of our knowledge,
ISSS is used more often than subjective reports from teacty.6 Future work
ers, partly because reports have concluded that it provides
more benefits. For example, it identified relationships amongeveral future directions exist for this study. If tracking and
children who are shy and/or introverted [37]. Even if ISSSidentification were improved, the system could provide more
is mainly used in Japan and focuses on classroom situationsseful features for estimation. For this purpose, combina-
its definitions are reasonable to represent social status tions of environmental and wearable sensors are promising,
a classroom because its simple calculation is based on tlilewe use wearable sensors in real environments. In fact,
number of listed friends. In fact, observations of childrenpast research showed that integrating these different kinds
behaviors indicated that children with high social status aref sensors achieved both precise person identification and
more popular in classrooms. tracking [44]. In this study, we focused on estimating so-
In this study, since only the valid children data in thecial status. But we could of course use the estimation results
same grade were used, we could not add the data of moihe many other ways: providing such information to teachers
children from the same grade at the same school. We b@&nd school counselors to help them identify potential prob-
lieve that the data of 70 children with around six hours for dems in classrooms.
binary classification problem (not multiple/complex classi-  Moreover, the robot can be utilized to obtain more in-
fication) is adequate. Moreover, we conducted cross validdermation for the estimation of social status in two ways: its
tion in the evaluation process to appropriately evaluate theensors and interaction activities. For the former, the robot
performance of our developed model, even with a relativelycan integrate its own sensing data to the whole system. For

9.5 Limitations
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instance, person identification with the robot’'s camera and. Coie J. D., Dodge K. A. and Kupersmidt J. B. (1990) Peer Group
the estimated distance re'ationship between robots and peoBehavior and Social Status, in Peer Rejection in Childhood. S. R.

; ; 3 sher and J. D. Coie eds., Cambridge Univ. Press, pp. 17-59.
ple using distance sensors such as laser range finders WOLyaSalmiva"i C. Lagerspetz K. B'rk%vist K. Ostenﬁ’%n K. and

improve the robust estimation of social Stafu_‘S- _ ~ Kaukiainen A. (1996) Bullying as a Group Process: Participant Roles
For the latter, the robot can change position relationships and Their Relations to Social Status within the Group. Aggressive

by moving around in the environment and actively interact- Behavior, vol. 22, pp. 1-15.

; ; ; .- 8. Crothers L. M. and Kolbert J. B. (2008) Tackling a Problematic Be-
ing with children. Related to the above approach, changma havior Management Issue Teachers’ Intervention in Childhood Bul-

positions would be helpful to iQentify children because the i problems. Intervention in School and Clinic, vol. 43, pp. 132-
robot can move to an appropriate place based on the sensi39.
ing areas of the environmental sensors. Conversation b&- Rodkin P. C. and Berger C. (2008) Who Bullies Whom? Social Sta-

tween children, in particular about their friends, would also tUS Asymmetries by Victim Gender. Int. Journal of Behavioral De-
' ' velopment, vol. 32, pp. 473-485.

be helpful to estimate social status, but ethical issues ang) "5/nej R., Welsh M., Parke R. D., Wang S. and Strand C. (1997)

a cautious conversation design must be considered for thisa longitudinal assessment of the academic correlates of early peer
approach. acceptance and rejection. Journal of Clinical Child Psychology, vol.
26, pp. 290-303.
11. Van Laar C. and Sidanius J. (2001) Social status and the academic
10 CONCLUSION achievement gap: A social dominance perspective. Social Psychol-
ogy of Education, vol. 4, pp. 235-258.

We d | d ial stat timati t that 12. Coie J. D. and Krehbiel G. (1984) Effects of academic tutoring on
€ developed a soclal status estimation system that CoN~y,e gocjal status of low-achieving, socially rejected children. Child

sists of a people-tracking system using depth sensors and @evelopment, pp. 1465-1478.
person-identification system using RGB cameras. The syd3. Woods S., Davis M., Dautenhahn K. and Schulz J. (2005) Can
tem extracts features from children’s behaviors during their Robots Be Used as a Vehicle for the Projection of Socially Sensi-

| df fi d estimates thei ial status b five Issues? Exploring Children’s Attitudes Towards Robots through
€ssons and iree-ime and estimates their social Status By jes. |EEE Int. Workshop on Robot and Human Interactive Com-

SVM classifiers. We gathered children’s behaviors at a sci- munication, pp. 384-389.
ence room in an elementary school. Our system tracked thei#. Bethel C. L., Eakin D., Anreddy S., Stuart J. K. and Carruth D.
in a classroom almost all of the time (93.3%) and correctly (2013) Eyéwitnesses Are Misled by Human but Not Robot Inter-

identified the tracked children 65.5% of the time. Our sys- viewers. ACM/IEEE Int. Conf. on Human-Robot Interaction, pp. 25-
) ) 32.

tem estimated social status with 71.4% accuracy throughs, tanakaF., Cicourel A. and Movellan J. R. (2007) Socialization be-

tracking and identification. tween Toddlers and Robots at an Early Childhood Education Center.
Proc. of the National Academy of Sciences of the USA (PNAS), pp.
17954-17958.
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