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Abstract We developed a technique to estimate children’s
social status in classrooms with a social robot. Our approach
observed children’s behaviors using a sensor network. We
used depth cameras to track their positions and identified
them with RGB cameras and exploited the presence of a so-
cial robot for the estimations. We specifically observed the
children’s behavior around the robot, expecting that their in-
teractions with it would provide clues for estimating their
social status. We collected data at an actual elementary school
and observed 70 fifth graders from three different classes
during six lectures for each class period. Our system tracked
the positions of the children 93.4% of the time and correctly
identified them 65.5% of the time in crowded classrooms
that held 28 students. These results were used to estimate the
children’s social status. Our developed system successfully
estimated the children’s social status with 71.4% accuracy.

Keywords Estimation of social status· Sensor network·
Robots for classroom· Human-Robot Interaction

1 INTRODUCTION

In the relatively near future, social robots are expected to
interact with children in classrooms, including such situa-
tions as language education in classrooms [1, 2], language
teaching by social supportive behavior [3], and encouraging
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Fig. 1 Children with high and low social status during a lesson

students to pose questions to robot teachers in class because
asking a robot is easier than asking a human teacher [4].
However, social robots in classroom environments with chil-
dren need to understand the ‘social status’ of the children.
Social status, which broadly refers to a person’s rank within
a particular social structure, can be estimated by occupation
and education [5]. More specifically to classroom contexts,
social status is established through social acceptance and
social connections. Popular children rank high in the class-
room social structure, and less popular or ignored children
rank low [6] (Fig. 1).

Social status is often studied in educational and develop-
mental research because it is critically related to children’s
school life and academic performance. For instance, chil-
dren with low social status often become the targets of bul-
lying [7], and bullies tend to have high social status [8].
There are two bullying patterns: one involves a popular child
who bullies unpopular individuals of the same gender; the
other describes unpopular, aggressive boys who bully popu-
lar girls [9].



2 Tsuyoshi Komatsubara et al.

Social status also influences the academic outcomes of
children. Children with low social status tend to have less
successful academic performances [10]. The transformation
of low social status into low academic performance is prob-
ably due to reduced motivation to succeed [11].

We speculate that future social robots will be used for
interventions in the environments of children. The literature
has identified and discussed the effect of intervention. For
instance, the academic performance of children with low
social status was improved by training their academic and
social skills [12]. To reduce bullying, a few different inter-
ventions were considered, e.g., training non-bullying chil-
dren with high-status to intervene in bullying situations with
high-status bullies or helping low social status children ac-
quire better social skills and encouraging them to build bet-
ter social connections [8]. If a social robot were to under-
stand each child’s social status, it could be used during such
interventions to improve the position of low social status
children. The capability to understand social status is a crit-
ical step for such social robots.

2 RELATED WORKS

2.1 Social Robots for Children and Classrooms

Previous studies unveiled the possibility of using social robots
to support the social lives of children. For instance, Woods et
al. explored how differently bullied children tell stories fea-
turing a robot than children who haven’t been bullied [13].
Bethel et al. revealed that as an interviewer, a robot can be
used to investigate sensitive events [14], and Tanaka et al.
concluded that a robot can be accepted as a close peer of
children [15]. Belpaeme et al. explored whether a robot’s
adaptation to children’s characteristics effectively contributed
to teaching mathematics [16]. Komatsubara et al. investi-
gated whether a social robot increased science understand-
ing in classrooms [17] and whether using pointing gestures
encourage children to ask questions [18]. Shiomi et al. in-
vestigated whether a social robot stimulated the science cu-
riosity of children through a long-term interaction [19].

However, until now, no research has revealed how to de-
velop the capability of estimating social status, even though
the literature suggests that social robots will eventually ap-
pear in classrooms.

2.2 Understanding People in Group Setting

To the best of our knowledge, no previous works have ad-
dressed techniques that estimate social status. Some tech-
niques have estimated people’s relationships (e.g., friends),
although participants were required to use wearable sensors.

For instance, Choudhury et al. developed a wearable de-
vice called a sociometer that records the proximity events
of its carriers who were near each other from which they es-
timated people’s social networks [20]. Similarly, children’s
friendships in a classroom were estimated by proximity in-
formation that was observed with RFID tags around an in-
teractive robot [21]. Although these studies revealed the im-
portance of observing proximity information, we found that
it is difficult for children to constantly carry/wear a wearable
device in school.

Without requiring that any device be carried, we can still
identify individuals from their faces [22]. Nonetheless, face-
based identification is limited because it can only identify
people whose frontal or side face is observed by a camera.
Nathan et al. proposed a shape-based identification method
[23], but it would also probably perform poorly in such a
crowded situation as a school environment. Thus, face-based
identification alone does not adequately perceive people’s
behaviors. Instead, researchers have explored various tech-
niques to combine tracking techniques with person identifi-
cation (e.g., [24]).

Information from cameras has also been used for estima-
tion. For instance, Aran et al. observed such nonverbal fea-
tures as motion energy (motion regions on the upper torso
including arm and head motions) and speaking turns in a
small group meeting to estimate personality [25]. Hung et
al. proposed a method to identify the dominant person in a
group meeting from such features as speaking length and op-
tical flow [26]. Even though many previous works addressed
group-meeting situations, we focus on classroom situations.
The difficulty is that children often move around; thus ob-
serving their gestures/motions is complicated (since they of-
ten move beyond the camera view and do not necessarily
face the camera), and the room is too noisy (when they are
allowed to talk) to apply techniques that analyze their audi-
tory interactions.

Unfortunately, little is known about how to retrieve use-
ful information from children’s behavior in a classroom. In
contrast, our work, which pioneers the challenge of retriev-
ing information from classroom behavior, is built upon rather
robust tracking and identification techniques. We describe
the useful features we retrieved from an actual elementary
school science classroom and the techniques that estimated
children’s social status.

3 SYSTEM DESIGN

3.1 Expected Relation between Behavior and Social Status

Observing children’s social behaviors is critical to their so-
cial status. For example, children with high social status tend
to be friendly, interactive, and helpful [6], but children with
low social status tend to spend too much time alone [27];
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children with high social status spend more time with other
children. Since students with high social status often have
high social power [28], they can more easily ask for help
when facing a difficult problem during a lecture because
they move around more, and they may more frequently use
novel things like a social robot because they stay around it
more.

3.2 Technical Requirements

Our approach is to understand children through observa-
tions. We considered the following requirements:

Non-wearable:Although previous studies indicated the pos-
sible use of wearable sensors [20, 21, 29–31], children are
typically prohibited from bringing smartphones or other de-
vices to elementary schools. Thus, observation must be done
with non-wearable devices, i.e., with such sensors as cam-
eras.

Tracking and identification: The behaviors described in
Section 3.1 can be extracted if we can identify children and
continuously estimate their positions. Without wearable sen-
sors, a possible approach for person identification is with a
camera, i.e., face identification (face recognition). However,
face identification can only be done when a frontal/side face
is visible to the camera; this is not always the case, since
children often change their face direction or move around.
Such cases require a good combination of tracking and iden-
tification systems.

Social robot in classrooms:We installed a robot that is de-
signed to encourage self-learning. In our scheme, robots that
help learning will be used in classrooms. Interaction with
them will provide clues for an estimation system by a robot
that actively influences the children’s behavior.

3.3 Overall System Design

Figure 2 illustrates the architecture of our developed system
whose design is based on the above considerations. Our ob-
servation system (Section 4) estimates children’s positions
by integrating both people-tracking and face-identification
systems, while a social robot actively interacts with children
to support self-learning. When children’s faces are identi-
fied, their IDs are associated to the tracked entity in the
tracking system. The estimation system (Section 5) judges
children’s social status based on the features extracted from
their positions.

Fig. 2 System overview

Fig. 3 Sensor arrangement in classroom

Fig. 4 Depth image with estimated head positions (left) and overall
tracking results (right)

4 OBSERVATION SYSTEM

4.1 People-Tracking

We employed a people-tracking algorithm using depth sen-
sors [32] and attached depth cameras to the ceiling to esti-
mate the people’s positions and heights based on head and
shoulder shape detection. With our settings, the tracking sys-
tem follows the positions of all the people in the area at 30
Hz with accuracy of about 30 cm. This system has robust-
ness toward changes of color information due to different
clothing because it uses depth information. Since the depth
camera sees from the top down, it is also robust for crowded
situations.

We arranged the locations of the depth sensors to effi-
ciently cover the whole space. A sensor (Kinect, with a 57◦

horizontal and 43◦ vertical field of view (FOV)) covers ap-
prox. 4 m * 3 m of the space when attached to the ceiling
at 2750 mm. 24 depth sensors covered an 8 by 16 m area of
the room (Fig. 3). Fig. 4 shows a depth image from a sensor
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Fig. 5 Camera arrangement for face identification

and the classroom’s tracking result. In this room four to five
children are sitting around each desk, and the system tracked
them well in such a crowded situation.

4.2 Person Identification

For person identification, we employed a face-identification
approach using RGB cameras and commercially available
software (Omron, OKAO Vision [22]).

We designed the camera configurations to improve the
balance between the number of cameras and the chance of
face identification. OKAO Vision requires a view of a face
in a frontal direction within 20◦ (pitch) and 35◦ (yaw). The
school requested that cameras not obstruct classroom activ-
ities, e.g., no cameras on the desks facing individuals. Here
we assume that the children will at some point look at the
front of the classroom, where the teacher usually stands, and
so we only aimed one camera (Logicool, C920t, 70.5◦ hor-
izontal and 43.6◦ vertical FOV) at each desk, which should
capture all of the children at the desk (Fig. 5).

We also developed software to facilitate face registra-
tion that extracts the face regions from images and com-
pares them with the faces registered in the database. Since
face images vary depending on angles and facial expres-
sions, registering many face images with different angles is
a key factor for accurate face identification. Therefore, we
implemented a function to semi-automatically find the best
set of face images for registration. After processing the face
detection and identification processes, a coder labeled the
correct IDs for the face images and registered new individ-
uals using the stored face images. After manual coding, the
system optimized the face-identification performances using
the new registered images by testing the influence of regis-
tering each image over a randomly selected subsample of
images from the known yet still unrecognizable face images
of the same individual. We continued these processes to op-
timize the face-identification system until the performance
became saturated (Fig. 6).

4.3 Tracking and Identification Integration

We next describe the process that integrates the tracking and
identification results. Head positions are tracked in 3D ab-
solute coordinates, and faces are identified in the 2D cam-
era view. Since each suffers from some positioning errors,

Fig. 6 Flow of finding best matches of registered images

Fig. 7 Matching 3D people-tracking and face recognition

when multiple people are visible in a camera view, finding
the correspondence of both positions is complicated. For
our purpose we believe that failing to make an association
is preferable to making an incorrect association. To prevent
such associations, we defined a safe margin for integration.
An association is only applied when an identified face and a
tracked-head position are within a matching threshold and
the head position is outside of the safe margin of all the
other tracked-head positions (Fig. 7). We empirically con-
figured the threshold and safe margin to be 20 and 30 cm
horizontally, which is twice the vertical tolerance because
the tracking errors were larger in that direction.

5 ESTIMATION SYSTEM

We used the tracking results (Section 4) to estimate the chil-
dren’s social status. From them, we computed various be-
havioral features (discussed in Section 3), which are used for
machine learning with a Support Vector Machine (SVM).

5.1 Classroom Behavior Features

We computed the following features about children’s class-
room behaviors:
Time spent alone:Since less popular children (low social
status) tend to spend more time alone than children with
high social status (e.g., [27]), we measured the ratio of such
times. For each childi and each timet, we computed whether
any other children are within a threshold (DTH) of this child
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and defined it as follows:

Timespent alone(i) =
1

Tracked(i)

tn

∑
t=t0

(isAlone(i, t) ·∆ t) (1)

isAlone(i, t)=

{
1 i f (d(p(i, t), p( j, t))> DTH f or all j ( j ̸= i))
0 otherwise,

(2)

whereTracked(i) returns the total tracking time of childi,
∆ t is the time step (33.3 msec) for this calculation,p(i, t)
is the x-y position of childi, andd(a,b) is the Euclidean
distance between x-y positions,a andb. Based on proxemics
knowledge [33], we used multiple thresholds forDTH: 500
mm as an intimate space to interact with friendly people and
1200 mm as the personal space to collaborative with others.
Number of surrounding people: Since children with high
social status tend to be helpful, friendly, and interactive, they
get many nominations [6], meaning that they have many
friends or people who like them. Thus, they spend time with
such individuals and well work with others in group-work
activities. To capture this idea, we measured the average
number of surrounding people. For each child and each mo-
ment, we computed the number of other people within a dis-
tance threshold (DTH) from him/her and defined this feature
as:

Number o f surrounding people(i) =
1

Tracked(i) ∑tn
t=t0 ∑ j=∀ j(i f (d(p(i, t), p( j, t))< DTH)).

(3)

Moving distance outside personal desk area:In classroom
activities, children were split into groups and assigned to
desks. While children often worked within the area of their
desk, sometimes they moved around in the classroom. Since
children with high social status interact with others more
than children with low social status, they visited people out-
side their own desks more frequently (within their own desk
area, they moved for the activity that was assigned to their
group). We measured the average moving distance outside
their desks. Here a child is judged to be outside of her own
desk area if the distance from the desk exceeds a range thresh-
old (RTH) and defined it as follows:

Movingdistance Outside(i) =
1

Tracked(i) ∑tn
t=t0(isOutside(i, t) ·d(p(i, t), p(i, t +∆s))) (4)

isOutside(i, t) =

{
1 i f (dm(p(i, t),desk(i))> RTH)
0 otherwise,

(5)

wheredesk(i) is the rectangular area of childi’s assigned
desk anddm is the shortest Manhattan distance between the
position and the rectangular area on the x-y plane (y is the
classroom’s long side). We setRTH to 300 mm for situations
where children change their own positions around the desk
and 600 mm for situations where they go to other desks. We
set∆s to 500 msec to eliminate noise effects in the tracking.

5.2 Robot-related Features

Since we believe that children’s interaction with the robot
will provide additional clues for an estimation system, we
added the following features:
Time spent around the robot:Social status is closely con-
nected to social hierarchy, in which a high rank denotes a
higher priority access to resources [28]. When a robot is
novel, since many children want access to it (e.g., [1]), a
somewhat competitive situation exists where only a limited
number of children can actually secure access to it. Children
with high social status tend to gain more access than chil-
dren with low social status. Therefore, we measured the ra-
tio of the time that children spent around the robot. For each
child and each moment, we computed whether the child was
within a distance threshold (DR TH) from the robot and de-
fined this feature as:

Spent time around the robot(i) =
1

Tracked(i) ∑tn
t=t0(i f (d(p(i, t), p(r, t))< DR TH) ·∆ t), (6)

wherep(r, t) is the robot’s x-y position. In the calculation of
the robot-related features, based on proxemics knowledge
[33], we used multiple thresholds forDR TH: 500 mm as the
intimate space for friendly people, 1200 mm as the personal
space for familiar people, and 3500 mm as the social space
for acquaintances.
Number of surrounding people when around the robot:
Since children with high social status interact with the robot
and their friends or people who like them, we measured the
average number of surrounding people who lingered around
the robot. For each child and each moment, we computed the
number of other people within a distance threshold (DR TH)
from him/her and defined this feature as:

Num.o f surrounding people when being around the robot(i)

=
∑tn

t=t0 ∑ j=∀ j (aroundRobot(i, j,t)·i f (d(p(i,t),p( j,t))<DR TH))

Tracked(i)

(7)

aroundRobot(i, j, t) = nearRobot(i, t) ·nearRobot( j, t) (8)

nearRobot(i, t) =

{
1 i f (d(p(i, t), p(r, t))< STH)
0 otherwise.

(9)

We setSTH as the threshold distance to 3500 mm, which
represents the social space from the robot.

5.3 Classification System

We used an SVM with a Radial Basis Function (RBF) kernel
to classify social status as high or low. We trained the clas-
sifiers using the data obtained in the data collection (Section
6) and sought the best features from all the combinations of
features and parameter C for SVM by a grid search using
10-fold cross validations. For implementation, we used the
scikit-learn library [34].
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6 DATA COLLECTION

6.1 Environments

Data collection was conducted in an elementary school’s sci-
ence room (Fig. 3) that is used for lectures about twice a
week per class. Four to five children sit around each desk
(six desks from the front were used). The lessons lasted 45
minutes, followed by a five to twenty minute free period.

6.2 Participants

The science rooms we observed were comprised of three
classes of 5th graders with 84 students (14 girls and 14 boys
in each class). Their average height was 147.2 cm (S.D. was
9.4). The experimental protocol was approved by our in-
stitutional review board (reference number 13-502-8) and
the school administrators. All the children and their par-
ents signed consent forms and agreed to have their behavior
recorded.

6.3 Sociometry Questionnaires

We distributed sociometry questionnaires before the study
and asked the children to list five friends. From their an-
swers, we computed the index of sociometric status score
(ISSS) as the social status of each child in each class with
the following previous definition [35]:

ISSS=
1
2
(
Nnominated

Np−1
+

Nmutual

Nmax
), (10)

whereNnominated is the number of nominations (i.e., other
children listed this child as a friend),Np is the number of
children in the class,Nmutual is the number of mutual nom-
inations (i.e., other children who listed this child, and those
listed by this child), andNmax is the maximum number of
nominations (i.e., five in our study). If this value is high, the
child has high social status, i.e., the selection of low/high
social status contains no subjective input from teachers or
peers.

6.4 Procedure

Each class had six lessons during the study. The room re-
mained available before and after the science lessons. Among
the six lessons, five free-time sessions included the robot,
which was available only during free-times before/after lessons
and did not engage in interaction during lessons. A lesson
usually included two parts: lecture and group-work. During
lectures, the teacher usually spoke in the front of the class
while students sat and listened quietly. In the group-work

(a) Lecture (b) Group-work (c) Free-time

Fig. 8 Children’s behavior across different phases

part, students formed groups based on their seat locations
and conducted an experiment or worked with instruments.
For instance, one time they changed the weight and the ini-
tial angle of a pendulum to study its characteristics.

6.5 Robot

We used a humanoid robot designed for human interaction
to elicit anthropomorphic expectations. It has two arms (each
with 4 degrees of freedom (DOF)), a head (3 DOFs), and is
120 cm tall. It has cameras and a speaker on its head with a
Pioneer 3DX mobile base.

The robot interacted with children by quiz-style conver-
sations about recent lessons. It started the interactions by
greeting them by name and then asked a multiple choice
question that was related to their science lessons:What does
a fetus receive through its umbilical cord? Please choose
two answers: 1) oxygen, 2) blood, 3) nutrition, or 4) water.
In addition, it answered science questions related to recent
lectures. The contents of the 40 quizzes were prepared from
lecture materials. Through quizzes and answers to science
questions, the robot was designed to help children review
recent lessons and deepen their comprehension.

The robot, which generally operated autonomously, iden-
tified the locations of the children from the people-tracking
infrastructure (Section 4.1) and oriented its gaze direction to
each child individually while it spoke. It identified children
by its own camera, which enabled it to refer to the children
by name. However, since speech recognition remains too
difficult in such noisy environments, an operator assumed
that function’s control. When a relevant question to the lec-
ture topics was asked, the operator controlled the robot to
provide information. When typical questions were asked, he
selected from pre-implemented behaviors. Otherwise, he di-
rectly typed utterances to answer the questions.

Further analysis of a robot’s effect on children’s learn-
ing was previously reported [17]. Some of the children who
actively interacted successfully learned through interaction
with the robot.

6.6 Obtained Dataset

Behavioral Data
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The observed children’s behaviors were quite different
across the three phases: lecture, group-work, and free-time.
During lectures (Fig. 8(a)), the children sat at their desks,
listened to the teachers, and stayed still. Since the lecture
phase provided little information, we did not use any data
from it.

During group-work (Fig. 8(b)), the children were usually
at their desks, engaging in experiments. Some worked alone;
others worked together. Some children visited other desks to
check the progress of different groups or to ask questions.

During free-time (Fig. 8(c)), children were often with
their friends. Before the science lessons, many were talking
with friends, but some just sat at their desks and waited for
the lessons to start. After the science lessons, some children
gathered around the robot and interacted with it, while others
chatted with friends or returned to their homerooms.

We separated the data based on the above definitions
of the phases and used both the group-work and free-time
phases for our estimations. We obtained 235 minutes of group-
work and 112 minutes of free-time data.
Questionnaire Data

We got 70 valid data samples; some children were absent
when the questionnaires were given. We categorized their
social status ashigh or low using the obtained ISSS scores
and used the average scores as the cutoff point. Thelow class
included children whose scores were below average, and the
high class included children whose scores were above it. 34
children were categorized in thelow class and 36 in thehigh
class.

7 EVALUATION

7.1 Evaluation of Observation System

We evaluated the correct tracking and identification ratios
of the children during the lessons. A human coder watched
five minutes of video of the group-work phase result, identi-
fied the children, and checked whether each child had been
monitored by the tracking system and whether his/her id was
correctly associated.

The tracking system tracked children 93.3% of the time
(on average, 279.8 sec out of 300). Each child was correctly
identified 65.5% of the time (196.5 sec on average). A wrong
ID was associated 4.9% of the time (14.8 sec). For the re-
maining 22.9%, no ID was associated (68.6 sec).

We consider this result good, since the classroom sit-
uation is very complex. For instance, Fig. 9 (left) shows
scenes where the tracking system failed to track some of the
children who sometimes gathered around a desk to observe
materials for the group-work experiment. In such situations,
they were huddled too closely together to be separated, and
some were occluded by others. Note that once tracking is
lost, even though the system recovers from the error, the

Fig. 9 Difficult tracking and identification moments

Table 1 Performance of SVM classifiers

Features Performance

Only-with-robot 61.4%
Without-robot 61.4%

Proposed method 71.4%

identification remains lost until the face is seen again. This
is the main source of the gap between the time being tracked
(93.3%) and identified (65.5%).

Figure 9 (right) shows another case where the tracking
system failed. Here it recognized the faces of two boys, but
their bodies were so close that it only identified one of them.
In such moments, tracking was unstable, and identifications
were likely to fail. Nevertheless, even though such situations
often occurred, our system was able to track and identify
them for our purpose: estimating social status.

7.2 Evaluation of Estimation System

Since we expect that the robot’s presence will add estimation
clues, we evaluated the contribution of theclassroom be-
havior features(Section 5.1) and therobot-related features
(Section 5.2) as well as the performances of the following
three conditions:
Without-robot: The only feature vector for SVM was the
classroom behavior features(Section 5.1) that estimate how
the system worked without a robot in the classroom.
Only-with-robot: The only feature vector for SVM was the
robot-related features(Section 5.2) that estimate how the
system worked if the estimation was done only with the in-
formation observed from the robot (i.e., only the children’s
behavior around it).
Both (proposed): All the features reported in Sections 5.1
and 5.2 were used. This is our proposed system.
For all the conditions, except for the above features, we used
the system reported in Section 5 with the same training and
tuning procedures reported in Section 5.3.

Table 1 shows the result. Our proposed system, which
successfully estimated children’s social status with 71.4%
accuracy, outperformed the other two conditions. The per-
formances of the without-robot and only-with-robot meth-
ods were both 61.4% and 61.4%. We conducted a paired
t-test to compare the performances of the cross validation re-
sults among the proposed method and each alternative method.
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Table 2 Confusion matrix

Estimation Estimation Estimation
high low high low high low

Ground-high 28 8 23 13 29 7
truth low 19 15 14 20 13 21

(a) Only-with- (b) Without- (c) Proposed
robot robot method

Significant differences were shown between the proposed
and only-with-robot methods (p=.046) as well as the pro-
posed and without-robot methods (p=.001).

Table 2 shows a confusion matrix whose details we fur-
ther analyzed. If we compare theproposedandonly-with-
robot conditions, the main difference is the estimation of
children with low social status, whose result resembled the
result of children with high social status. That is, our pro-
posed method more successfully estimated children with low
social status than theonly-with-robotcondition. In fact, many
of them (with whom the proposed model was successful but
not theonly-with-robot) were children who were alone dur-
ing free-time relatively far from the robot.

If we compare theproposedand without-robotcondi-
tions, the main difference is their estimation of children with
high social status; the result resembled the result of the chil-
dren with low social status. In fact, many children with high
social status, with whom the proposed model was success-
ful but not thewithout-robotmodel, were children who fre-
quently interacted with the robot. Because the proposed method
used information about the children’s behavior around the
robot, it outperformed thewithout-robotcondition, showing
that interaction with the robot provided an additional clue
for estimation.

7.3 Analysis of Contributing Features

We also investigated which features were important for the
estimation by eliminating each one by one and checking the
performances. We identified high contributions fromtime
spent aloneduring free-time andtime spent around the robot.
When we removed them, the estimation performance de-
creased by more than 10%. We investigated whether chil-
dren with low social status spent more time alone (avg. value
from Eq. 1, high: 0.642, S.D. 0.141, low: 0.718, S.D. 0.144)
and less time around the robot (avg. value from Eq. 9, high:
0.014, S.D. 0.030, low: 0.007, S.D. 0.014) than children with
high social status. A t-test showed a significant main ef-
fect in time spent alone(t(1,68)=2.244,p=.028), but it did
not show a significant main effect intime spent around the
robot(t(1,68)=1.166, p=.247). Children with high social sta-
tus tended to be with friends or others, and such observations
as togetherness (or aloneness) were keys for successful es-
timation. On the other hand, we need to carefully interpret
these results. Even though a child is alone, she hasn’t nec-

Fig. 10 High social status children spent free-time with others

Fig. 11 High social status child formed a group

Fig. 12 Low social status child alone and watching others play

Fig. 13 Low social status child looking at a group from a distance

essarily been socially rejected; these results only identified
that such tendencies of children’s behaviors are related to so-
cial status. In the following subsections, we retrieved scenes
based on these contributing features.

8 OBSERVATIONS

The evaluation in Section 7.2 revealed that both thein-class
behaviorand thebehavior around the robotwere important
information for estimation. Here we further scrutinize the
relevant behaviors of some of the children.

8.1 In-class Behavior Related to Social Status

Figure 10 shows children with high social status during free-
time who often spent time with friends. After the end of
each lecture, they gathered and talked. Fig. 11 shows an-
other child with high social status. During his free-time, he
invited his friends to his desk to play, where many gathered.

In contrast, children with low social status were less fre-
quently with others and sometimes were alone. Fig. 1 shows
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(a) t = 0 (sec) (b) t = 545 (sec)

Fig. 14 Children’s behavior across different phases

(a)2ndlecture (b) 4thlecture

Fig. 15 High social status child repeatedly interacted with robot

Fig. 16 Low social status child who seemingly longs to join a group
around robot

Fig. 17 Low social status child who gave up joining a group

scenes where children with low social status were isolated
and returning back to their seats alone, while other children
had already left with friends or were talking with others. Fig.
12 shows another child with low social status. During free-
time while other children were playing together, he stayed
at his desk alone and watched them. Fig. 13 shows another
child with low social status. Once during free-time, he ap-
proached a group of children who were playing together
without joining them and stayed alone at a distance.

8.2 Behavior around the Robot

Children with high social status spent much more time around
the robot than children with low social status. Fig. 14 shows
a child with high social status who is interacting with the
robot. In this situation, she and her friend interacted with
it for 545 seconds. Fig. 15 shows another child with high
social status. Every day she approached the robot and re-
peatedly interacted with it with her friends.

In contrast, children with low social status spent less
time with the robot. Fig. 16 shows a child with low social
status who seemed to want to interact with other children
and the robot, but he only moved around a group of people.
Fig. 17 also shows a child with low social status who was
unable to participate. He looked at the group, approached it
(Fig. 17, left), but gave up (Fig. 17, right).

9 DISCUSSION

9.1 Contribution of Observation System

Since most previous studies relied on human observations,
children’s classroom behavior has not been scrutinized. One
reason is the difficulty of observing it in detail by sensors.
Children often move around and stay very close to each
other. Our study faced this difficulty using a sensor network
that combined depth and RGB cameras. Our system tracked
children 93.3% of the time and identified them 65.5% of the
time. Even if room exists for better performance, our study
identified one important step for understanding children in a
classroom with sensor-based observation.

Perhaps the information from a system with only 65.5%
accuracy is too noisy for estimation. However, note that 65.5%
accuracy does not necessarily imply that the remaining 34.5%
of the information was inaccurate. Only 4.9% of such iden-
tification was inaccurate, and situations where the target per-
son was simply not identified comprised the remaining 29.6%,
meaning that information is missing for the majority of these
moments. If our observations continued for a long enough
period, the loss of part of the observations would not be a
big problem for the estimations. When a child was correctly
identified, the features (Section 5) were correctly computed
if other people were correctly tracked (with 93.3% accu-
racy), even without being identified. We just need such in-
formation as the number of other people. Nevertheless, we
believe that our estimation is based on quite accurate fea-
tures.

9.2 Contribution of Estimation of Social Status

Our method estimated social status with 71.4% accuracy.
Given that the chance rate is 50%, perhaps this result is
not very good. However, we believe that our achievement
is solid because the estimation of social status is not simple.
To the best of our knowledge, since no previous work has au-
tomatically estimated social status, we are unable to provide
a simple comparison of performances. As a reference, look-
ing at similar problems related to the estimations of human
attributions might be fruitful. Although neither in a class-
room nor about social status, some studies addressed the es-
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timation of personality1, where 2-class classifiers resulted in
estimation results of personality with around 70% accuracy.
For example, Mohammadi et al. developed a method that re-
sulted in 60-72% accuracy [31]. Since observing classroom
behavior is not easy, around 70% accuracy is a solid achieve-
ment for our initial challenge of the estimation of social sta-
tus.

The comparison in Section 7 revealed that the observa-
tion of the children interactions with the robot provided use-
ful clues for estimation. We found that the active interac-
tion caused by the social robot increased its understanding
of the children’s social status. As far as observing a cou-
ple of early repeated interactions, children with high social
status gathered around the robot with friends, while chil-
dren with low social status less frequently participated in
interactions. Note that we need to carefully consider how
to treat observations from longer term interactions because
the robot’s novelty eventually wears off and the interactions
of children with high/low social status will probably change
over time.

If we conducted social status estimations by separating
the data for each of the three classes, the performances be-
came 65.7%, 63.7%, and 61.3%. This performance is rela-
tively low compared to using all of the class data. We thought
that separating the data for each class might allow us to use
just a relatively small amount of data and lower the estima-
tion performance.

9.3 Implications

This study describes a promising way of estimating chil-
dren’s social status. Thus, we should be able to develop a
robot that supports children’s activities. For example, since
children with low social status are often alone, a social robot
might encourage them to interact with others. We observed
that when a social robot called a child by name, other chil-
dren made space for him/her to join and they interacted to-
gether. Even with 71.4% estimation accuracy, a robot could
encourage children who are estimated to have low social sta-
tus to interact with it. With this approach, even though esti-
mation failure does not cause serious negative results, the
robot could encourage children with low social status to en-
gage with other children.

1 Personality and social status are clearly different constructs (con-
cepts) in psychology. Social status is closely connected to social prefer-
ence (i.e., whether everyone likes him/her), and hence it tends to be the
consequence of individual capability, such as social competence [36]
or the tendency to engage in aggressive behavior [6]. For example, a
child with an extroverted personality is not necessarily popular and
might be perceived as annoying or aggressive if he behaves badly; a
shy introverted child might be liked if she is socially competent, e.g.,
helpful and cooperative.

9.4 Alternative Approaches

In this section, we compare the advantages and disadvan-
tages of alternative approaches to estimate social status and
tracking and identifying children in classrooms with our pro-
posed method.

The first topic is an alternative approach to estimate so-
cial status. One possible method is to rate friendships and
compute social status from them with Eq. 10, because we
can accurately estimate friendships by observing proximity
events (who is often with whom) [20, 21], when children’s
behaviors are accurately observed with observation systems.
However, the accurate estimation of friendships or nomina-
tions (who likes whom) is not easy. For instance, we imple-
mented a method [21] that identified proximity events as the
moment when two children were within a certain distance,
which we set to 2000 mm because it yielded the best per-
formance. However, only 14.7% of the nominations were
correctly identified, and 11.5% false-positive nominations
were estimated. Because the estimated nominations were
inaccurate, the estimated social status with Eq. 10 poorly
matched the ground-truth. The 2-class classification accu-
racy was only 40.0%, which is also poor and below the chance
rate, possibly because the information from the proximity
events is rather incorrect in our system. When our system
fails to identify a child’s friend during proximity events, it
mistakenly assumes that he/she is not with this friend.

The second topic is an alternative sensing approach. In
this study we used an environmental sensor to estimate so-
cial status instead of such wearable devices as Bluetooth
bracelets due to several technical requirements. Here we dis-
cuss the possibility of using wearable devices for this pur-
pose. In the context of academic trials, even though asking
children to wear devices might be allowed in some circum-
stances, such permission is unusual and often denied. More-
over, asking children to always wear such bracelets requires
a significant amount of human resources because this is con-
trary to what children naturally do. Actually we did expe-
rience some difficulties in our school environment through
discussions with the school principal. He (and his teachers)
worried that the preparation time for such devices might
erode into class time. During long-term experiments, the
load of wearing/removing such devices during every class
would obviously increase. Also, since children might forget
to carry or wear them, opportunities to gather whole data
would decrease in the experimental period. Another concern
is that using so many wireless devices might deleteriously
influence a school’s Wi-Fi environments, which is also re-
lated to the management’s view of the elementary school.

Furthermore, a sensor array approach provides more use-
ful information than Bluetooth-based wearable sensors: the
accuracy of positioning children. A wearable device enables
estimates of relatively rough position relationships among
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children, but the accuracy of wireless-based positioning falls,
especially in complex and crowded classroom environments.
Unstable wireless signals might cause misunderstanding about
estimating the relative position relationships among children.
Also, it is difficult to estimate the absolute positions of many
users accurately with such wearable sensors under about 10-
m scale environments.

9.5 Limitations

Several limitations exist in our method that estimates the so-
cial status of children by observing their activities in class-
rooms. For estimations, we used SVM because it is a lead-
ing algorithm for classification problems and performs rea-
sonably well. Using different classification methods might
provide different performances. But in this study, we fo-
cused on whether the social status of children can be es-
timated through autonomously extracted features and com-
bined the children’s activities in both group-work/free-time
to improve the performances rather than comparing the per-
formance with different classification methods.

Even though we did not use any manually annotated
identification data to estimate social status, such an approach
might be useful when the number of features is limited. How-
ever, testing all combinations manually with many features
would be difficult. Moreover, the system needs to automat-
ically recognize informative features; if they are only rec-
ognized by human capabilities, it would be difficult to use
the system. This approach might have difficulty identify-
ing what features/combinations are best for this purpose, but
building a system with current technologies would be appro-
priate.

We estimated social status with ISSS, which is a com-
mon metric in Japan to investigate social status in children-
related researches [37–39]. To the best of our knowledge,
ISSS is used more often than subjective reports from teach-
ers, partly because reports have concluded that it provides
more benefits. For example, it identified relationships among
children who are shy and/or introverted [37]. Even if ISSS
is mainly used in Japan and focuses on classroom situations,
its definitions are reasonable to represent social status in
a classroom because its simple calculation is based on the
number of listed friends. In fact, observations of children
behaviors indicated that children with high social status are
more popular in classrooms.

In this study, since only the valid children data in the
same grade were used, we could not add the data of more
children from the same grade at the same school. We be-
lieve that the data of 70 children with around six hours for a
binary classification problem (not multiple/complex classi-
fication) is adequate. Moreover, we conducted cross valida-
tion in the evaluation process to appropriately evaluate the
performance of our developed model, even with a relatively

small amount of data. However, additional data and analysis
are needed to generalize the proposed method’s validity.

We used proxemics knowledge to extract features such
as personal distance, even though a previous study reported
that children define and use personal space differently than
adults [40]. On the other hand, several studies reported that
the distances between children and robots are consistent with
the social distance chosen by adults [41–43]. Therefore, we
investigated the effects of children’s personal space by chang-
ing the threshold (DTH) for Eqs. (2) and (3). Since the chil-
dren’s ages were 11 to 12 in this study, we employed 110
cm as the interaction distance based on [40]. (about 90%
from 120 cm). After recalculation of the performance, we
found that the modified interaction distance did not change
the performance.

Moreover, as an additional test, we employed 40 cm as
an intimate distance; we note that the paper only investi-
gated the difference of interaction distance with children,
and therefore we used the same ratio for the modified inti-
mate distance, which is 90% of 45 cm, based on the orig-
inal intimate distance definition. But after recalculating the
performance, we found that the modified intimate distance
just slightly decreased the performance (68.3%). The mod-
ified intimate distance is not based on the collected data
from a previous paper [40], as described above. One pos-
sible explanation is that in this grade the intimate distance
between adults and children is similar. Since the accuracy
of our human tracking system was about 30 cm, the recal-
culated performance was influenced by these factors. Thus,
we must carefully interpret the achieved performance of this
study, which is based on the proxemics knowledge of adults,
but we believe that our proposed method’s achieved perfor-
mance has adequate impact even if we only use the prox-
emics knowledge of adults.

9.6 Future work

Several future directions exist for this study. If tracking and
identification were improved, the system could provide more
useful features for estimation. For this purpose, combina-
tions of environmental and wearable sensors are promising,
if we use wearable sensors in real environments. In fact,
past research showed that integrating these different kinds
of sensors achieved both precise person identification and
tracking [44]. In this study, we focused on estimating so-
cial status. But we could of course use the estimation results
in many other ways: providing such information to teachers
and school counselors to help them identify potential prob-
lems in classrooms.

Moreover, the robot can be utilized to obtain more in-
formation for the estimation of social status in two ways: its
sensors and interaction activities. For the former, the robot
can integrate its own sensing data to the whole system. For
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instance, person identification with the robot’s camera and
the estimated distance relationship between robots and peo-
ple using distance sensors such as laser range finders would
improve the robust estimation of social status.

For the latter, the robot can change position relationships
by moving around in the environment and actively interact-
ing with children. Related to the above approach, changing
positions would be helpful to identify children because the
robot can move to an appropriate place based on the sens-
ing areas of the environmental sensors. Conversation be-
tween children, in particular about their friends, would also
be helpful to estimate social status, but ethical issues and
a cautious conversation design must be considered for this
approach.

10 CONCLUSION

We developed a social status estimation system that con-
sists of a people-tracking system using depth sensors and a
person-identification system using RGB cameras. The sys-
tem extracts features from children’s behaviors during their
lessons and free-time and estimates their social status by
SVM classifiers. We gathered children’s behaviors at a sci-
ence room in an elementary school. Our system tracked them
in a classroom almost all of the time (93.3%) and correctly
identified the tracked children 65.5% of the time. Our sys-
tem estimated social status with 71.4% accuracy through
tracking and identification.
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