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Abstract  Consider a situation where a robot initiates a conversation with a person. What is 

the appropriate timing for such an action? Where is a good position from which to make the initial 

greeting? In this study, we analyze human interactions and establish a model for a natural way of 

initiating conversation. Our model mainly involves the participation state and spatial formation. 

When a person prepares to participate in a conversation and a particular spatial formation occurs, 

he/she feels that he/she is participating in the conversation; once he/she perceives his/her 

participation, he/she maintains particular spatial formations. Theories have addressed human 

communication related to these concepts, but they have only covered situations after people start to 

talk. In this research, we created a participation state model for measuring communication 

participation and provided a clear set of guidelines for how to structure a robot’s behavior to start 
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(a) Looking at robot                  (b)  Looking at a product 

Figure 1 Situations in a shop 

and maintain a conversation based on the model. Our model precisely describes the constraints and 

expected behaviors for the phase of initiating conversation. We implemented our proposed model 

in a humanoid robot and conducted both a system evaluation and a user evaluation in a shop 

scenario experiment. It was shown that good recognition accuracy of interaction state in a 

conversation was achieved with our proposed model, and the robot implemented with our 

proposed model was evaluated as best in terms of appropriateness of behaviors and interaction 

efficiency compared with other two alternative conditions. 

Keywords  Behavior modeling • Initiation of interaction • Natural-HRI  

 

1 Introduction 

How do you meet someone and start a conversation? Even though this might 

seem trivial for people, it is not at all trivial for robots. In a typical situation for 

humans, we stop at a certain position in relation to the target, greet the person, and 

find ourselves conversing. We do this almost unconsciously. As humans, we 

consciously think about the contents of the conversation after it has started. 

In contrast, it is difficult for a robot to replicate what humans unconsciously do. 

It needs to know every detail of the behavior, such as where and when it should 

stop and what should be said; however, since we do this unconsciously, intricately 

describing what we are doing is not easy. For instance, consider a shop situation 

(Fig. 1), where a customer has an appointment with a sales-robot to get a product 

explanation. The customer might wait at the entrance while looking toward the 

direction from which the robot is coming (Fig. 1a). Or he/she might look at 

another product displayed in the shop (Fig. 1b). Apparently the expected behavior 

The final publication is available at 
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for the robot is different in each situation, but what is the basis for generating the 

expected behavior for each situation? 

In this study, we focus on the initiation of conversation in natural human-robot 

interaction. Clark modeled human communication based on the notion that people 

in a conversation share views of whether each of them is participating in the 

conversation or not and, furthermore, defined their activity roles [1], such as a 

speaker, hearer, or side participant. Kendon’s analysis on spatial formation, 

known as F-formation is in line with this view so that the participants in a 

conversation form a particular shape [2]. Even though HRI researchers clearly 

recognize the importance of the participation state and spatial formation [3-6], no 

study has revealed how a robot should behave in different kinds of conversation-

initiation interactions depending on the situation we denote as the initiation of 

conversation. In short, the above examples of the problem in Fig. 1 remain 

unsolved. 

To cope with this problem, we analyzed human behavior during the initiation of 

conversation. We learned the importance of two functions in our model: 

 recognition of an interlocutor’s spatial formation; 

 constraints on a robot’s spatial formation used to maintain the participation 

state. 

Spatial formations that people establish in the interaction are used to model 

people’s participation in the conversation. Likewise, behaviors they perform 

during the conversation are used to derive guidelines for how a robot should use 

its knowledge and structure its behavior to initiate and maintain a conversation. 

By overcoming these problems, we can realize our goal in this study, i.e., 

providing service through initiating a conversation on the robot’s own initiative, 

and move one step closer toward smooth integration of robots into society. 

In our previous work [7], we conducted a human observation experiment and 

provided the results of the data analysis. We created a model of initiation of 

conversation based on the observation results and implemented it on our 

humanoid robot. We then conducted an evaluation experiment to compare our 

model with two baseline models, and our proposed model was evaluated as the 

best.  

An earlier conference paper first described our approach to initiating a conversation in RSS 2011 [7]. The current 
article chronicles the whole observation, implementation and evaluation process from start to finish in one place, providing 
additional details, and offers new evaluation results needed to support our finding that the proposed solution is effective 
toward initiation of conversation. 

The final publication is available at 
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In this paper, we build on this previous work in providing more detailed 

analysis, discussions and additional evaluations. Firstly, we added a detailed 

explanation of what exactly the participants performed, in order to explain our 

model more clearly and allow readers to extend the knowledge that we found 

from our observations. Secondly, we added a more detailed explanation, which 

will enable other researchers to reproduce/extend our proposed model. Thirdly, 

we added a system evaluation and an objective evaluation based on our formal 

evaluation experiment to further evaluate our model in an objective way. The 

system evaluation clearly showed how well our model works. And the objective 

evaluation provides more detailed information to tell what the robot exactly 

performed and what is different in each condition, and therefore shows the 

effectiveness of our model more persuasively. Fourthly, we also added further 

discussion to explain why lab situation settings are used for this research work, 

instead of using realistic scenarios such as a real field observation.  

The rest of this paper is organized as follows. Section 2 describes some related 

work, and Section 3 describes our approach to modeling people’s behavior. 

Section 4 introduces our platforms and implementation of the model. In addition, 

we evaluated the model in both subjective and objective evaluations, which are 

explained in Section 5. Section 6 provides a discussion on the findings, and 

Section 7 summarizes our contributions. 

2 Related Works 

2.1 Natural HRI and Engagement 

It is assumed that social robots will eventually engage in “natural” interaction 

with humans, i.e., interaction like humans do with other humans. The use of 

human-like body properties for robots has been studied to provide greater 

naturalness in the interactions. Often, studies have focused on the interaction after 

the robot meets people. For instance, studies have been conducted on pointing 

gestures [8, 9] and gaze [10-13].  

Similar to the concept of initiation of conversation, researchers have studied the 

phenomenon of engagement. Engagement is a situation where people listen 

carefully to an interlocutor’s conversation. A model has been developed for using 

The final publication is available at 
http://link.springer.com/article/10.1007/s12369-015-0285-z



5 

the gaze behavior of robots [6] and people to recognize the engagement state [14, 

15]. 

The main difference between the initiation of conversation and engagement is 

that the latter addresses a phenomenon that occurs after the people and the robots 

have established a common belief that they are sharing a conversation. In contrast, 

the phenomenon of initiation of conversation, which our study addresses, 

concerns the situation before or just at the moment when they establish this 

common belief of mutually sharing a conversation. 

2.2 Initiating Conversation 

Within the research on human communication, studies are sparse on how 

humans initiate conversation beyond the basic facts that they select interaction 

partners and recognize and approach each other [16], stop at a certain distance 

[17], start the conversation with a greeting [18, 19], share a recognition of each 

other’s state of participation [1], and arrange themselves in a suitable spatial 

formation [2]. Recent studies have started to reveal more detailed interaction, 

including the knowledge of detection of service initiation signals used in bars [20] 

and the finding that side participants stand close to the participants and often 

become the next participant [21]. But this new knowledge remains limited. 

 In HRI, spatial formation has been studied in relation to initiating 

conversation. Michalowski et al. revealed the relation between the robot’s 

environment and the person’s engagement toward the conversation, and they 

suggested that to improve the interaction it’s important to put a stronger emphasis 

on movement in the estimation of social engagement and to vary the timing of 

interactive behaviors [4]. Hüttenrauch et al. used a Wizard-of-Oz study and found 

that people follow an F-formation in their interactions with robots, just as with 

humans [22]. Kuzuoka et al. studied the effect of body orientation and gaze in 

controlling F-formation and found that with these movements, a robot could lead 

the interaction partner to adjust his/her position and orientation while considering 

the proper F-formation [3]. Studies have also generated more natural robot 

behavior, such as the approach direction and distances to a seated person [23, 24] 

and the path to approach and catch up with a walking person [25, 26], the standing 

position for presenting a product [27], the proper distances for passing behavior 

[28] and following behavior [29], and the selection criteria for choosing an 

The final publication is available at 
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(a) Shop scenario 

       

(b) Meeting scenario 

Figure 2 Examples of initial positions in two scenarios 

interaction partner [30]. A few studies have attempted to promote people’s 

participation by encouraging behavior [5, 31] and detecting the requested 

behavior [32]. However, since these studies were aimed at encouraging people’s 

participation, they only showed the one-sided behavior of the robot, not how 

robots should behave while considering the people’s real-time status in the 

initiation of conversation. In our research, we proposed a model that could make 

the robot recognize the participation state of the people and then act accordingly 

to make them both participate in a conversation and maintain it.  

 

3 Modeling Initiation of Conversation 

To find the regular patterns in people’s behavior at the moment of the initiation 

of conversation, we observed the interaction of two people when they started a 

conversation. We focused on their spatial formation and gaze, both of which have 

been discussed in the literature as important factors for human communication 

[33]. 

3.1 Data Collection 

We collected data in two different settings, shop and meeting scenarios, to find 

the consistencies and differences across different purposes and environments. In 

each scenario, one person initiated conversation with the other. We assumed that 

whether a participant plans to explain an object or lead another to a location in the 

store after the initial greeting influences how that person behaves in the initiation 

The final publication is available at 
http://link.springer.com/article/10.1007/s12369-015-0285-z
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  (a) initial setting       (b) without a subsequent plan   (c) with a subsequent plan 

Figure 3   Influence of subsequent plan in initiate position 

 of conversation. Based on this assumption, we divided each scenario into two 

situations. 

Shop scenario: This interaction was conducted in a 5 x 5-m room in which four 

objects were placed (Fig. 2a). One person behaved as a visitor waiting in the shop, 

and the other person acted as a host (a clerk) who greets the visitor and either (1) 

offers a service or (2) explains products. 

Meeting scenario: This interaction was conducted in the lobby (4 x 10 m) of a 

research institute (Fig. 2b). One person acted as a visitor, and the other behaved as 

a host who meets the visitor and either (1) offers help or (2) leads the visitor to 

another location. 

We set the initial position of the host out of sight of the visitor, and then the 

host entered the environment to initiate conversation. The experimenter provided 

either of two plans: the host only needs to greet the visitor in without plan or 

explain a product (or lead the visitor) in with plan. With this setting, we observed 

how they behaved both verbally and non-verbally to initiate a conversation.  

Twenty Japanese undergraduate students (ten pairs, eleven men and nine 

women) were paid for their participation in this data collection. We had confirmed 

that the two participants in a pair did not know each other before the experiment. 

The participants could make sure about the environment (ex., the products put in 

the shop) before the interaction so that they could provide information to the 

visitor easily. They repeated each scenario ten times (after five trials, they 

switched roles, so each acted in one role five times for each scenario). We asked 

the visitor to position himself/herself differently every time so that we could 

collect diverse data. Beyond these instructions, the participants were allowed to 

behave freely.  

The final publication is available at 
http://link.springer.com/article/10.1007/s12369-015-0285-z
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Although we specified the roles that the participants acted, the behaviors in the 

whole interaction were done freely by the participants. We did not determine their 

detailed behaviors; we only planned their roles and asked them to behave while 

considering these roles (we asked participants to not repeat the most recent 

behavior). Thus, the situations that both the host and the visitor faced were often 

different. By analyzing the detailed behaviors that the participants had both 

unconsciously and consciously carried out, we wanted to find out the regular 

patterns of people’s interaction when initiating a conversation. 

The interaction data was collected with one video camera. We set the camera at the 

place from where its field of view could cover the whole interaction of the two 

people. We have put some marks on the floor to help with the data analysis such as 

retrieving distance and angle parameters. 

3.2 Data Analysis 

Participants took diverse spatial formations and behaviors when they initiated 

conversations. For example, the host sometimes directly approached and greeted 

the visitor, saying, “Welcome, may I help you?” in the central area (Fig. 3b); in 

other cases the host moved to the side of the visitor and only spoke first when 

he/she reached a position near the visitor (Fig. 3c). To retrieve the systematic 

patterns in such initiations of conversation, we observed the position and timing 

of the host’s performance: (1) how to initiate conversation (initiation behavior), 

(2) where to initiate conversation (initiation position), (3) where to talk (talking 

position), and (4) how to talk (utterances). 

3.2.1 Patterns of initiation behavior 

In our preliminary analysis of how the hosts behaved, we found that their 

choice of initiation behavior was influenced by two factors: visibility and plan. 

For example, most hosts directly approached the visitors when the visitors noticed 

them or when the hosts did not have a plan. On the other hand, most hosts 

approached the place where both the visitor and the next target (e.g., product or a 

route to the next location) are visible when the hosts had a subsequent plan and 

the visitors did not notice the host. From these observations, we coded all 

situations to scrutinize the differences in the host’s behavior patterns. We used 

Cohen’s Kappa, an index of inter-rater reliability that is commonly used to 

The final publication is available at 
http://link.springer.com/article/10.1007/s12369-015-0285-z
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Table 1 Analysis of initiation behavior 

Scenario Plan Visibility 

Initiation behavior 

Approaching 

visitor 

Approach  to a place where both 

visitor and target are visible 

Shop 

(100 cases) 

With plan Noticed      (18/50) 18 (100%) 0     (0%) 

(50 cases) Unnoticed    (32/50)  3 (9.3%) 29  (90.7%) 

Without plan Noticed      (16/50) 16 (100%)  0     (0%) 

(50 cases) Unnoticed    (34/50) 34 (100%) 0     (0%) 

Meeting 

(100 cases) 

With plan Noticed      (24/50) 21 (87.5%) 3  (12.5%) 

(50 cases) Unnoticed    (26/50) 8 (30.7%) 18  (69.3%) 

Without plan Noticed      (29/50) 29 (100%) 0     (0%) 

(50 cases) Unnoticed    (21/50) 21 (100%) 0     (0%) 

 

measure the level of agreement between two sets of dichotomous ratings or scores 

[34]. We asked two coders who have no knowledge about robotics and HRI to 

analyze the collected data. They did not participate in the data collection 

experiment and did not know about the purpose of the collected data. They were 

only told to analyze the data based on their own cognition. First, the two coders 

classified visibility into two cases: the visitor noticed the host (noticed) and the 

visitor did not notice the host (unnoticed). Moreover, we analyzed the initiation 

behavior, which coders classified into two cases: approach to visitor and 

approach to a place where both visitor and target are visible. 

Cohen’s Kappa coefficient from the two coders’ classifications was 0.87 for 

visibility and 0.84 for initiation behavior, indicating that their classifications were 

highly consistent. After the classifications, to analyze the consistent trajectories 

for modeling, the two coders discussed and reached a consensus on their 

classification results for the entire coding process. 

The coding results are shown in Table 1, which confirms our observation. We 

found that when the visitor did not notice the host’s arrival when the host had a 

subsequent plan, most hosts tended to choose a behavior by considering their 

subsequent plans regardless of their scenario. In addition, at this time the host 

formed a spatial formation with the visitor while considering the target product, in 

a way similar to using O-space [27]. O-space is a convex empty space surrounded 

by the people involved in a social interaction, where every participant looks 

inward into it to share attention to the same product, and no external person is 

allowed in this region. The hosts always moved toward the visitors to greet them 

when they did not have subsequent plans in both scenarios; even if the hosts did 

have subsequent plans, most moved to the visitors when they were noticed by the 

The final publication is available at 
http://link.springer.com/article/10.1007/s12369-015-0285-z
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Figure 4   Choice of initiate timing and position 

 visitors. As shown in Fig. 4, in summary, we found that the choice of initiation 

behavior was influenced by whether the hosts had a further plan to explain 

something to the visitor. However, this choice is also influenced by visibility. If 

the visitor noticed the host within a certain distance, the host moved to the visitor 

to initiate the conversation. 

3.2.2 Initiation position 

In our preliminary analysis of the timing of the initiation of the hosts, we found 

that their position was influenced by the greeting pattern and the position 

relationships. For example, when the visitors were noticed by the hosts, the hosts 

immediately greeted the visitors as they approached, but some hosts greeted the 

visitors after approaching the visitors when they were far away. Moreover, if the 

visitors were not noticed by the hosts, the hosts approached the visitors 

differently, depending on their initial position relationships.  

From these observations, we coded the host’s greeting patterns to scrutinize the 

differences in their behavior patterns. Again, the two coders classified the 

greeting patterns into two cases separately for both noticed and unnoticed case: 

the host greets visitors immediately (Fig. 5a), the host greets visitors after 

approaching them (Fig. 5b); the host approaches from the frontal direction and 

then greets, and the host approaches from the non-frontal direction and then 

greets. 

Cohen’s Kappa coefficient from the two coders’ classification was 0.93 for 

noticed and 0.84 for unnoticed for greeting patterns, indicating that their 

classification was highly consistent. After classification, to analyze the consistent 

trajectories for modeling, the two coders discussed and reached a consensus on 

their classification results for the entire coding process. 

The final publication is available at 
http://link.springer.com/article/10.1007/s12369-015-0285-z
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Figure 5   Detailed analysis of initiation position in notice category 
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Figure 6  Initiation distance and initiation angle 

 We further analyzed the position relationships between the host and visitor. 

First, we measured the distance (initiation distance) and angle (initiation angle) 

(Fig. 6) when the host attracted the attention of the visitor by saying, “Excuse me” 

or “Welcome,” because the position relationship in this timing is essential to 

understanding how the host initiates participation. 

In the noticed category, we found that the initiation distance is different 

depending on the scenario and greeting patterns. In the shop scenario, the average 

for initiation distance was 2.2 +/- 0.2 m and 2.5 +/- 0.3 m for “greet immediately” 

and “greet after approaching.” In the meet scenario the average of initiation 

distance was 3.3 +/- 1.5 m and 6.2 +/- 1.0 m for “greet immediately” and “greet 

after approaching.”  

Our interpretation is that the host immediately greets the visitor when the 

distance from the visitor is lower than a certain distance, but the host does not 

immediately greet the visitor when the distance from him/her is greater than a 

certain distance when the visitor notices the host. Note that the initiation angle is 

not measured in the noticed category because the visitor and the host face each 

other.  

On the other hand, in the unnoticed category, the initiation distance was not 

influenced by the scenario. In the shop scenario, the average of the initiation 

The final publication is available at 
http://link.springer.com/article/10.1007/s12369-015-0285-z
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Table 2 Analysis of initiate position (distance and angle) and distance to talk 

Scenario Visibility Greeting pattern 
Initiate  

distance 

Initiate angle 

(maximum) 

Talk  

distance 

Shop  

(100 cases) 

Notice Greet immediately (16/34) 2.2 +/- 0.2 - 0.7 +/- 0.1 

(34 cases) Greet after approaching (18/34) 2.5 +/- 0.3 - 0.8 +/- 0.4 

Not notice Approach from frontal (18/66) 2.0 +/- 0.1 55~60 0.7 +/- 0.1 

(66 cases) Approach from non-frontal (48/66) 1.5 +/- 0.3 120~130 0.7 +/- 0.2 

Meeting 

(100 cases) 

Notice Greet immediately (42/53) 3.3 +/- 1.5 - 0.7 +/- 0.2 

(53 cases) Greet after approaching (11/53) 6.2 +/- 1.0 - 1.2 +/- 0.5 

Not notice Approach from frontal (17/47) 2.0 +/- 0.6 65~50 0.8 +/- 0.4 

(47 cases) Approach from non-frontal (30/47) 1.6 +/- 0.4 130~135 0.6 +/- 0.1 

 
distance was 2.0 +/- 0.1 m and 1.5 +/- 0.3 m for “approach from frontal” and 

“approach from non-frontal” directions, respectively, and in the meet scenario the 

average of the initiation distance was 2.0 +/- 0.6 m and 1.6 +/- 0.4 m for 

“approach from frontal” and “approach from non-frontal” directions, respectively.  

Since the initiation distances in “approach from frontal” and “approach from 

non-frontal” directions were obviously different, we measured the initiation angle 

to find the extent of these two greeting patterns. In the “approach from frontal” 

category, the maximum angle between the vector from the visitor to the host and 

the visitor’s orientation was 55° on the left and 60° on the right side in the shop 

scenario and 65° on the left and 50° on the right side in the meeting scenario. On 

the other hand, in the “approach from non-frontal” category, the ranges of 

minimum to maximum angle between the vector from the visitor to the host and 

the visitor’s orientation were 55~120° and 60~130° on the left and right sides in 

the shop scenario and 65~130° and 50~135° on the left and right sides in the 

meeting scenario. The minimum of this angle was the same as the maximum in 

the “approach from frontal” cases.  

We conclude that the hosts chose their positions not only considering the 

distance but also the direction, depending on the position relationships. As shown 

in Fig. 7a, when the hosts came from the visitor’s frontal side, they always went 

straight toward the visitor. When the hosts came from behind the visitors (Fig. 

7b), instead of going toward the visitors, the hosts went to their side to make sure 

that they were in the visitors’ field of view before starting to talk. In addition, the 

distance at which they started to greet the visitor was influenced by whether the 

host came from the visitor’s frontal side. 

The final publication is available at 
http://link.springer.com/article/10.1007/s12369-015-0285-z
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Figure 7 Detailed analysis of initiation position in unnoticed category 

 3.2.3 Talking position 

Next, we measured the position relationships between the hosts and the visitors 

when they started to talk (e.g., explaining products or leading movement) in each 

category. As a result, the host kept walking toward the visitor while greeting until 

the host was within a proper distance for talking to the visitor. We found that this 

distance, which averaged about 0.7 m, was common to both scenarios, except for 

the “greet after approaching” category in the meeting scenario. 

3.2.4 Analyzing utterances 

Finally, we investigated how the host starts to talk with the visitor. We found 

that the utterances the host used to initiate the conversation were influenced by 

whether the visitor was considered to participate in the conversation or not. After 

the visitor noticed the host’s arrival, the host greeted the visitor with an expression 

like “Welcome.” It seemed to them as if they had already agreed to participate in a 

conversation. We called this mental agreement the participation state. When the 

host initiated the conversation from the side of the visitor without making eye 

contact, the host first needed to attract the visitor’s attention. This situation is 

called visitor not participating in the conversation. Consequently, when the host 

was noticed by the visitor or was coming from the frontal direction of the visitor 

within a certain distance, the visitor was considered to be participating in a 

conversation with the host, and thus the host needed to make an utterance 

immediately. When the host was coming from the non-frontal direction of the 

visitor within a certain distance (“Approach from non-frontal” case in Table 2, 48 

trials in shop scenario and 30 trials in meeting scenario), only the host was 

considered to be participating in a conversation toward the visitor (but the visitor 

The final publication is available at 
http://link.springer.com/article/10.1007/s12369-015-0285-z
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was not yet participating). It is not necessary for the host to utter something at 

once. However, to make the visitor participate in the conversation, the host first 

needs to either adjust the spatial formation with the visitor or say a phrase like 

“Excuse me” to attract the visitor’s attention (31/48 trials in shop scenario and 22/30 

trials in meeting scenario).   

We found that the above phenomena were shared by both scenarios, except for 

the threshold distance when they started a conversation. We concluded that the 

basic phenomena in initiating conversation were common among scenarios and 

environments. 

3.2.5 Summary 

In this data collection, we conducted our observation experiment in a simple lab 

situation. For meeting scenario, we consider that the environment is as the same 

as the real world and the situation is very common. While for the shop scenario, 

the decoration of our shop is simple and not all the participants had training or 

experience in how to behave as a shopkeeper in a shop. However, our purpose is 

to find common human behavior when initiating conversation instead of 

shopkeeper-specific behavior. We consider that it is appropriate to assume that the 

participants have the common sense needed to naturally initiate conversation with 

others.  

We found four key points for initiating conversations: patterns of initiation 

behavior, initiation position, talk distance, and utterance. Moreover, we found 

several factors that influence them: scenario, plan, visibility, and greeting pattern. 

Patterns of initiation behavior are influenced by plan and visibility (situation 

dependent); initiation position and talk distance are influenced by scenario, 

visibility, and greeting pattern (situation and environment dependent). Utterances 

are influenced by greeting pattern (situation dependent). 

4 A Robot that Addresses Initiation Process 

We implemented our model in a robot so that it appropriately addressed the 

initiation of conversation, i.e., choosing an appropriate position to start talking 

with appropriate timing. 

The final publication is available at 
http://link.springer.com/article/10.1007/s12369-015-0285-z
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Figure 9 Flow of initiating conversation 

 

4.1 General Framework 

We used a development framework that we had used successfully before to 

control the robot automatically [35]. Figure 8 shows an outline of our framework, 

which has three components: a humanoid robot, a motion capture system, and a 

robot controller (software). Control of the robot is carried out automatically 

without an operator. The spatial formation recognition function uses as input the 

position and orientation information of the robot, human and target from the 

motion capture system to recognize the spatial formation. The state controller 

receives the information from the spatial formation recognition and sends the 

state information to the spatial formation, utterance, and gesture controllers. The 

spatial formation controller calculates the target position for the robot every 100 

ms and then generates and sends commands that consist of forward velocity and 

rotation velocity to the robot automatically to control its movement. The 

The final publication is available at 
http://link.springer.com/article/10.1007/s12369-015-0285-z



16 

developer writes commands in advance with a markup language that can both 

control the robot’s gesture and utterance, and the robot automatically uses them 

according to the information from the state controller [35]. 

Figure 9 shows the robot’s flow for initiation of conversation. There are two 

paths that can be taken until the conversation starts. In one case, the robot initiates 

participation. It approaches, stops at an appropriate position (proactive 

adjustment of spatial formation), and attracts the visitor to participate in the 

conversation with a drawing attention action. 

In the other case, the visitor initiates the conversation. While the robot is 

moving to a certain position (for proactive adjustment of spatial formation), the 

visitor prepares to initiate the conversation. Thus, the visitor’s participation state 

changes to participating first, and then the robot adjusts its spatial formation to be 

appropriate for the participation state. In this case, it performs a reactive 

adjustment of spatial formation. 

4.2 Hardware 

We used Robovie-II, a 1.2-m-tall humanoid robot with a 0.3-m radius that is 

characterized by its human-like body expressions. It has a 3-DOF head and 4-

DOF arms. Its mobile base is equipped with wheels. Its maximum speed is about 

0.7 m/s. And in our experiment we set the maximum speed of the robot as 0.5m/s 

for security reasons. 

Since our research focus is to confirm our model’s validity, we used a motion 

capture system as the sensor input. The motion capture system acquires body 

motions and outputs the position data of markers to the system. It outputs the data 

in real time with a 100-ms output cycle, and the error is less than 2 mm. Twenty-

three markers were placed on the human and robot bodies, and four markers were 

attached to each product that was used for a subsequent plan. 

4.3 Spatial Formation Recognition 

4.3.1 Participation state 

We define the visitor’s and robot’s participation states to indicate whether the 

human and the robot are participating in a conversation. We define the 

participation states of the robot and the human as PSR and PSH. When the robot is 

The final publication is available at 
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participating in a conversation, PSR =1; otherwise, PSR =0. When the human is 

participating in a conversation, PSH =1; otherwise, PSH =0.  

We also define a joint participation state to show the relationship between the 

robot and the visitor in the conversation as PSJ (i.e., PSR, PSH). There are four 

state variables of the joint participation state in the implementation. 

 No one participating 

This state variable, which indicates a situation where neither the robot nor the 

visitor is participating in the conversation, is defined as PSJ= (0, 0).  

 Only robot participating 

This state variable indicates a situation where only the robot is participating in a 

conversation with the visitor, i.e., PSJ= (1, 0). Although the robot is considered to 

be participating in a conversation with the human, the human does not realize that 

the robot is approaching. In this case, the robot is allowed to greet the human, but 

it can also adjust its position to a better place instead of talking immediately. In 

addition, in this state, the robot should say something like “Excuse me” to draw 

the human’s attention and initiate conversation. As the human starts to participate 

in the conversation, the robot begins to greet the human. 

 Only visitor participating 

This state variable indicates a situation where only the visitor is participating in 

a conversation with the robot, i.e., PSJ= (0, 1). This means that only the human is 

considered to be participating in a conversation with the robot. It is possible that 

the visitor recognizes the robot and wants to say something to the robot before the 

robot greets him/her. However, as we found in the observation experiment, 

implicit behaviors always come before the explicit ones. Meanwhile, before the 

explicit contact (like saying a word), implicit behaviors such as standing position, 

body orientation and gaze would be established first. Since in our model the 

participation state could be detected by analyzing the spatial formation, the robot 

would always realize the visitor’s intention and participate in the conversation at 

once. In this case, the robot must adjust the spatial formation to participate in the 

conversation and greet the human. 

 Both participating 

This state variable indicates a situation where both the robot and the visitor 

recognize the conversation possibility and are paying attention to each other. We 

record it as PSJ= (1, 1). This means that since both the robot and the human are 

The final publication is available at 
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Figure 10 Participation zone 

participating in the conversation with each other, the robot should immediately 

greet the human. 

4.3.2 Participation zone 

Estimation of the participation state is a key component of this study. From our 

observations of human interaction, we found that people initiated conversation (a) 

when their gaze met within a certain distance and (b) inside the visitor’s field of 

view within a certain distance when the visitor didn’t notice the other’s arrival. 

From these observations, we hypothetically developed a participation zone that 

consists of three parts: gaze, sight, and front zones. The gaze zone is the space 

established by one’s gaze; if two people are in each other’s gaze zone (their gazes 

meet), they perceive an obligation to participate in a conversation. The sight zone 

is a cone-shaped space established in front of a person to represent one’s sight; if 

one person wants to initiate participation with another, he must enter the visitor’s 

sight zone first (when their gaze does not meet). The front zone is an obtuse fan-

shaped space established in front of a person to represent one’s frontal side; if a 

person enters the visitor’s sight zone and keeps the visitor in his own front zone, 

he perceives an obligation to participate in a conversation. When both people 

enter each other’s front zones, they both perceive an obligation to participate in a 

conversation. 

The final publication is available at 
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With the three participation zones defined above, it is possible to estimate 

whether a person is participating in a conversation with another, and thus to 

determine the proper initiation pattern, initiation position and utterance. 

Next, we report the method of estimating participation zones. In addition, 

estimation of the visitor’s focus of attention is also needed when the host has a 

subsequent plan. The parameters we use below are derived from our observation 

experiment or models that were used successfully in previous research efforts. As 

reported in Section 3.5, parameters for gaze zone are situation- and environment-

dependent. Even though the front zone and the sight zone are independent of the 

situation and the environment, it may also be necessary to adjust their parameters 

to position the robot.  

 Estimation of participation zone  

 Since it is not easy to detect a person’s gaze accurately, we used a simple 

technique that analyzes the person’s head orientation instead. Fig. 10a illustrates 

the gaze zone, which is set as a 30° cone-shaped area (parameter was adjusted 

according to the accuracy of our motion capture sensor) in front of a person’s (or 

robot’s) head within a changeable distance. When the robot is in the human’s gaze 

zone, we assume that the human is looking at the robot and realizes the robot is 

approaching. 

We use Eq. 1 to calculate whether the robot is in the human’s gaze zone: 
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where PR is the position of the robot in the environment near the person and PH is 

the position of the person. Angle(θPH,PR, θG) is a function that indicates the 

constraint of the human’s gaze orientation. We used InitiateDistancegaze, which 

we analyzed in Section 3.2.2, as the length of the gaze zone and set it to 2.5 m in 

the evaluation experiment based on our observations (initiation distance of Greet 

after approaching in shop scenario in Table 1). θG is the human’s gaze direction. 

Parameter Dist(PH, PR) is in the x-y coordinate, and Angle(θPH,PR, θG,) is in the x-y-

z coordinate. If the value of the position of robot PR is not 0, the robot is in the 

human’s gaze zone. 

We set up precise parameters to define the sight zone from our observation 

results (initiation distance and initiation angle of Approach from non-frontal 
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direction in Table 1), and thus the zone was set to a 270° fan-shaped area in front 

of the body of a person (or robot) within a 1.5-m distance (Fig. 10b).  

We defined Eq. 2 to calculate whether the robot is in the human’s sight zone: 
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where we use InitiateDistanceSight (1.5 m) and InitiateAngleSight (270°), which we 

analyzed in Section 3.2.2, as the length and angular region of the sight zone. All 

of the parameters here are in the x-y coordinate. 

 We set-up precise parameters to define the front zone from the social distance 

[17], observations reported in Section 3.2 (initiate distance and initiate angle of 

Approach from frontal in Table 1), and the preliminary tests. Accordingly, the 

zone was set to a 120° fan-shaped area in front of the body of a person (or robot) 

within a 2.0-m distance (Fig. 10c). 

We defined Eq. 3 to calculate whether the robot is in the human’s front zone: 
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where we use InitiateDistanceFront (2.0 m) and InitiateAngleFront (120°), which 

were analyzed in Section 3.2.2, as the length and angular region of the front zone. 

All of the parameters here are in the x-y coordinate. 

 When these conditions are satisfied, the participation state changes from not 

participating to participating. However, the opposite is not true; since the 

transition of the participation state from participating to not participating needs 

verbal interaction, it is not controlled in this estimation module. 

4.3.3 Visitor’s focus of attention 

As reported in Section 3, whether the visitor is paying attention to the target 

product, which the robot would explain as a subsequent plan, influences the 

robot’s standing position. Therefore, we need to recognize the visitor’s focus of 

attention.  

We used a previously reported method [27] that identifies an object in 

transactional segments as the focus of implicit attention. A person’s transactional 

segment is defined as the space in front of him/her when there is no obstacle 

between the person and the object. When the angle between the forward direction 

The final publication is available at 
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Table 3 Definitions of Joint Participation State 

 H_Gaze H_Front H_Sight Else 

R_Gaze (1,1) (1,1) (1,0) (0,0) 

R_Front (1,1) (1,1) (1,0) (0,0) 

R_Sight (0,1) (0,1) (0,0) (0,0) 

Else (0,0) (0,0) (0,0) (0,0) 

 

of the person’s body and the vector from his/her body center to an object is less 

than 90° and the distance between him/her and the object is less than 2 m, the 

object is identified as the person’s implicit attentional target (Fig. 11). 

If an object is in a person’s transactional segment, we assume that the person is 

paying attention to it. We used Eq. 1 to calculate whether an object is in the 

person’s transactional segment: 
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Here, PO is the position of an object in the environment, PH is the person’s 

position, θPH,PO is the vector from the person’s body center to PO, and θH is the 

person’s body orientation. Dist(PH, PO) is the distance between the object and the 

person. Angle(θPH,PO, θH,) is the angle between the vector from PH to PO and the 

person’s body orientation. All of the parameters here are in the x-y coordinate. If 

the value of the position of object PO is not 0, the object is in the human’s 

transactional segment and the human is paying attention to it. Here, we only used 

this simple method to estimate the person’s focus of attention due to our sensor 

and experimental setting. This model gives the robot the basic ability to provide 

services according to the visitor’s focus of attention. In some environments where 

objects are placed tightly, the recognition precision is one limitation of the model. 

However, one could easily use other methods for the task, since many researchers 

have already addressed this issue. 

The final publication is available at 
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Figure 12 Searching grid        Figure 13 Reactive adjustment of spatial formation 

 

4.3.4 Recognition of the participation state 

We recorded the situation where the robot is in the human’s gaze, front, and 

sight zones as H_Gaze, H_Front, and H_Sight, and the situation where the human 

is in the robot’s gaze as R_Gaze, R_Front, and R_Sight. Table 3 shows the 

relationship among joint participation state PSJ and the three participation zones. 

4.4 Spatial Formation Control 

A conversation is always carried out when both people perceive themselves to 

be participating in it. When a robot attempts to initiate a conversation with a 

visitor, the most important thing is to ensure that both the visitor’s and its own 

participation state are set to participating. We created a spatial formation 

controller to control the robot’s position and orientation to achieve this.  

This unit controls the robot’s standing position with a motion capture system. 

The system seeks the optimal standing position for the robot in a search area. A 

cell establishing a 20 x 20-cm standing position divides the search area (Fig. 12). 

This module estimates the values of all cells in the search area and selects the one 

with the highest value as the optimal standing position. Then the robot goes 

directly toward the position, stops and adjusts its orientation. The position is 

updated every 100 ms. 

From our observations of human-human interaction, we found the following: 

(a) The host kept facing the visitor and gazing at him/her within a certain distance 

when the visitor was participating; (b) when the visitor was not participating in 

the conversation, people always went to the position from where they could easily 

explain the target product or direction to the visitor if necessary. Thus, we created 

two models to control the spatial formation. 

 Reactive adjustment of spatial formation 

The final publication is available at 
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Figure 14 Proactive adjustment of spatial formation 

When the visitor is participating in the conversation, the robot needs to not only 

immediately participate in it but also get closer to the visitor and turn to him/her. 

We define this adjusting of position and orientation as the reactive adjustment of 

spatial formation. When the visitor is participating in the conversation, the robot 

should immediately start this adjustment, even if it has a previously made plan. 

We identified three rules for the reactive adjustment of spatial formation (Fig. 

13): 

1) The robot should be at a position that allows itself to remain in the sight 

zone of the visitor. 

2) Our observation on human-human interaction in Section 3.2.2 showed that 

the proper talking position is about 0.7 m, which ranges from 0.5 to 1.2 m. 

However, it is risky to place the robot too close to the visitor. Thus, in our 

implementation, we set the robot at a position that maintains a distance of about 

1.1 to 1.5 m to the visitor (used successfully earlier [27). 

3) The robot should not turn to other orientations. It must keep facing the 

visitor to keep participating. 

We calculated the distance between the robot position and each cell so that the 

robot could choose the nearest cell as its target position.  

We calculated the values of each cell for reactive adjustment using Eq. (5): 
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where PT is the position of each cell, as shown in Fig. 10. PR is the temporal 

position of the robot. All of the parameters are in the x-y coordinate. 

Position PT of the cell with a maximum value must be chosen as the 

approaching target position to which the robot directly moves. 

 Proactive adjustment of spatial formation 
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When neither the visitor nor the robot is participating in the conversation, the 

robot should approach the visitor first. Through our observations we found that 

the host tended to approach the visitor while considering whether he had a 

subsequent plan (29/32 trials in shop scenario, 18/26 trials in meeting scenario, as 

shown in Table).  Since at this time the robot has the freedom to choose the 

location, we define this approach as the proactive adjustment of spatial formation, 

which has two rules (Fig. 14): 

1) When the robot only needs to greet the human without referencing an 

object or a place (without plan), it can simply go to the visitor’s front zone when 

approaching from the front. Otherwise, it needs to enter the visitor’s sight zone 

and keep a certain distance (1.1-1.5 m).  

We defined proactive adjustment in the without plan cases by Eq. 6: 
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where all of the parameters are in the x-y coordinate.  

Position PT with maximum value must be chosen as the approaching-target 

position. 

2) When the robot needs to introduce some objects or places (with plan), it 

should choose the greet position that will keep the target object (or direction) 

visible to both the visitor and itself after the conversation has started. In this paper, 

we set this target in the field of view (270° from our observations) of both the 

visitor and the robot. 

We defined Proactive adjustment in the with plan cases by Eq. 7: 
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where PO is the position of the target object. θRB is the robot’s body orientation. 

All of the parameters here are in the x-y coordinate. 

Position PT with maximum value must be chosen as the approaching-target 

position. 
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4.5 Utterance and Gesture Control 

We controlled the robot’s utterances with a simple utterance controller that 

manages four functions: greeting, drawing attention, guiding, and explaining. A 

human developer pre-wrote the sentences, and the robot automatically uses them 

based on information from the state controller. The robot greets visitors when 

both of their participation states are participating and draws attention when only 

the visitor is not participating. When both are participating in the conversation, if 

the visitor is paying attention to the target product, the robot first explains it or 

guides the visitor to it. 

The gesture controller accepts two types of input. One is from the state. When 

the state is participating, this controller makes the robot maintain eye contact or 

joint attention with the visitor. As the other type, it also receives input from the 

utterance controller to synchronize pointing gestures with utterances. 

5 Experiment 

We conducted an experiment that included both system and user evaluations to 

verify that our proposed model is useful for a robot to initiate conversation. From 

the viewpoint of our model, the two scenarios share the same patterns for 

initiating conversation, and thus either of them would be sufficient for this 

evaluation. In the shop scenario, the environment and the situation were more 

complex than that in the meeting scenario, making it possible to test the model 

with more varied situations. Accordingly, we decided to use the shop scenario as 

our evaluation experiment. The experiment was conducted in a lab room, under 

the assumption that it was a small computer shop with three products (Fig. 1). A 

visitor visits this shop by appointment with a sales-robot to receive an explanation 

of one of the products. When he visits the shop, he waits for the sales-robot. When 

the robot arrives, they meet and initiate conversation. Finally, the robot explains 

the product. This setting places the focus of the evaluation on the interaction for 

initiating conversation. As we explained in Section 3.2.5 and Section 4.3, the 

parameters of the model we used in this experiment may need to be adjusted when 

using it in some other situations and environments. However, the knowledge of 

participation zone and initiation of conversation remains the same. The aim of the 

experiments is to investigate the validity of an initiation model that considers such 

regular patterns rather than the specific situation-dependent parameters. In this 

The final publication is available at 
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regard, we believe that using this simplified typical shop scenario is sufficient to 

show the effectiveness of the model. 

5.1 Hypothesis and Prediction 

From our observations, we found that people’s behaviors during the initiation 

of conversation are influenced by such factors as the interlocutor’s participation 

state. Therefore, we developed this hypothesis: 

Hypothesis: Robot implemented with the participation state models would 

provide a better impression of interaction behaviors and make the participants 

prefer it better than robots that not implemented with the participation state 

models. 

When using the proposed model, we assume that the robot can maintain its 

participation state effectively by adjusting its positions and timings as it greets 

and explains things to participants. We use appropriateness of the standing 

position when the robot greets the visitor, and appropriateness of the standing 

position when the robot explains the target product to evaluate the robot’s 

behavior in the conversation. On the contrary, a robot using alternative methods 

that fail to consider the participation state might fail to adjust these positions and 

timings. Therefore, our hypothesis argues that if a robot considers the constraints 

for maintaining the participation state, as our proposal does, it can provide better 

impressions than alternative methods. 

For comparison, we prepared two alternative methods: guide and best-location. 

The former method makes the robot initiate the conversation as quickly as 

possible by approaching a target within a certain distance. The latter method 

makes the robot stand at an appropriate location for explaining a product as 

quickly as possible before initiating the conversation. The details of the alternative 

methods are described in Section 5.2. Based on the above idea, we made this 

prediction: 

Prediction 1: The proposed model for initiating conversation will outperform 

the alternative methods in the following areas: feeling of appropriateness of the 

standing position when the robot greets the visitor, appropriateness of the 

standing position when the robot explains the target product, and overall 

evaluation. 
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In the data collection, the timing of the first utterances by people to initiate 

conversations depended on situations such as visibility; for example, they start to 

greet when the target notices them even if the distance between them seems far 

(“Greet immediately” case in Table 2, 16/34 trials in shop scenario, 42/53 trials in 

meeting scenario), although they approached before greeting when the target did 

not notice them. The proposed model considers such visibility to control the robot 

behaviors. If we successfully implement our ideas, our proposed method will 

make the robot behave as people do. On the contrary, the alternative methods that 

fail to consider such visibility will require more time to prepare the robot to speak 

first because they only consider the positions of the robot and the target, not 

visibility, in initiating conversation. This means that the robot would not greet the 

participant even the participant had already paid attention to it until it gets to a 

position closer to the participant. This may make the participant wait for the robot, 

which can obviously be seen as a waste of time. This may influence the 

participant’s impression on the robot’s appropriateness of greet position. 

Accordingly, we predict that: 

Prediction 2: Our proposed model of initiating conversation will decrease the 

time from the beginning to the first utterance compared to the alternative methods. 

 

In the data collection, the timing of explaining or guiding also depends on the 

situation; they started explaining or guiding after approaching the target if they 

were far away. The proposed model considers such spatial settings to control the 

robot behaviors. If we successfully implement our ideas, our proposed method 

will make the robot behave as people do. On the contrary, the alternative methods 

will create different spatial settings, so the explaining or guiding timing will be 

different. In the best-location method, since the robot speaks first after reaching 

the proper position for explaining the product, we predict that such timing will 

closely follow the timing of the greeting. On the other hand, in the guide method, 

since the robot speaks first after reaching the target, sometimes the greeting 

position is far from the proper position for explaining the product. Such timing 

will be far from acceptable greeting timing. Thus, this time can partially and 

indirectly indicate the appropriateness of the choice of the explaining position and 

may influence the participant’s impression of the robot. We predict that: 

The final publication is available at 
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Prediction 3: The proposed model of initiating conversation will decrease the 

time from the end of greetings to explanations compared to the alternative 

methods. 

 

If predictions 2 and 3 hold, the total interaction time with the robot that uses the 

proposed model will be less than the total interaction time with the robots that use 

the alternative methods. Based on these two predictions, we further predict that:  

Prediction 4: The proposed model for initiating conversation will decrease the 

total time compared to the alternative methods. 

5.2 Conditions 

The proposed model is compared with two alternative methods, which do not 

use the knowledge proposed in the paper but exploit other existing knowledge to 

provide the best interaction in the scenario.  

a) Proposed method (proposed): The robot behaves based on our proposed 

model. It first approaches the visitor while considering the subsequent plan, and 

initiate conversation with the visitor at the proper timing according to the 

participation state of both of itself and the visitor. The robot would then judge if it 

is necessary to guide the visitor to pay attention to the target product by analyzing 

the visitor’s focus of attention and then behave accordingly. At last, it explains the 

target product to the visitor from a proper position and orientation. 

b) Always greet and guide (guide): In this strategy, although the robot does 

not have a complicated model for conversation initiation, it behaves as politely as 

possible and initiates the conversation as quickly as possible. It first goes directly 

toward the visitor. When the distance between them is reduced to 2 m, the robot 

stops, greets the visitor, and asks the visitor to look at the product. As the visitor 

approaches the product and looks at it, the robot goes to the best location for 

explaining the product, i.e., the location based on O-space, and explains it. 

c) Always start the interaction at the best location for explaining (best-

location): In this strategy, the interaction is designed to be as simple and quick as 

possible. When the robot finds a visitor, it immediately stands at an appropriate 

location for explaining the product, i.e., the location based on O-space, and starts 

to talk.  
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In the guide and best-location conditions, we used a previous model [27] in 

which the robot chooses a position near the human and the product, while keeping 

the product visible to both the robot and the human. We use the following model 

for the robot to appropriately control its position: 


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                 (8) 

In advance, the experimenter wrote the text for the robot’s utterances in five 

categories: (1) drawing attention, (2) greeting, (3) guiding, (4) explaining, and (5) 

epilog. In the guide and best-location conditions, the robot says the texts from the 

greeting, guiding, explaining, and epilog categories. In our proposed method, the 

robot always says the texts in the greeting, explaining, and epilog categories 

because the decision to say the texts in drawing attention and guiding are 

dependent on the visitor’s participating state and focus of attention. If the visitor 

is participating in a conversation with the robot (focusing attention on the target 

product), the robot doesn’t say the texts in the drawing attention (guide) category. 

Otherwise, it says those texts. 

The exact utterances the robot spoke are as follows: 

Drawing attention: Excuse me. 

Greeting: Welcome, my name is Robovie and I’m in charge of PC sales. 

(Welcome would be omitted when the robot perform drawing attention first) 

Guiding: We have got a new laptop PC over there, please just take a look. 

Explaining: Let me show you this laptop PC. We just got it last week, and it is 

very popular now. The memory of this PC is 4GB, and its battery life is about 6 

hours. In addition, the price is 100,000 yen normally but it is now on a campaign 

and only cost 80,000 yen.  

Epilog: The introduction of this PC is over. Please just look around in our store 

at pleasure. 

5.3 Procedure 

Fifteen native Japanese-speaking people (seven men, eight women, average 

age: 27 +/- 11, range from 18 to 56) were paid for their participation in our 

experiment that was conducted in a 6 x 10-m room. Due to the visibility 

limitations of the motion capture system, the experiment area was restricted to a 3 
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x 4.5-m area. We used the robot and motion capture system described in Section 

4.2. 

First, the participants put on the markers of the motion capture system, which 

was then calibrated by the experimenter. Then, the scenario and instructions were 

provided to the participants, instructing them to evaluate the interaction of the 

robot from the standpoint of a shop owner who needed to choose one robot from 

the candidates. They played a visitor in various ways so that they could 

completely judge the appropriateness of the behavior of each robot. They 

evaluated three types of robots from the shop owner’s perspective to let them 

judge various spatial formations for initiating conversations, since each method 

has strengths and weaknesses. 

They simulated the behaviors of five types of visitors that decided all by 

themselves (as a result, the five types of visitors played by each participants are 

not all the same), such as someone waiting in front of the product or someone at 

the store entrance, and interacted five times under each condition. In each 

condition, after interacting with the robot five times and pretending to be a 

different visitor in each interaction, they filled out a questionnaire to rate their 

impressions. The experiment used a within-subject design and the order of 

conditions was counterbalanced. 

The experiments were recorded on video together with the motion capture 

system (recording the coordinates of the markers). In addition, the recognition 

results of the states and the detailed parameters such as positions, distances and 

angles of both the robot and the participant were also recorded by the robot 

system every 100 ms. 

5.4 Measurement 

5.4.1 System evaluation 

First, we confirmed the recognition accuracy of the participation state of our 

system for both the robot and the visitor using the recorded experimental data. 

The system recorded all of the participation states of both the robot and the 

visitors in each trial. Thus, the joint participation states were also recorded. To 

confirm whether the recognition of the joint participation state was correct, two 

coders classified the joint participation states into the four state variables 

explained in Section 4.3 for all of the trials. The two coders that analyzed the data 
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(a)              (b)              (c)                    (d) 

Figure 15 Discontinuing and re-establishing the conversation 

are two people who have no knowledge about robotics and HRI, but not the same 

people who coded the data collection (human observation experiment in Section 

3) results. And they did not know about the purpose of the data and the model 

proposed in our research. We then compared the coding and system recognition 

results. 

Second, we confirmed the appropriateness of the robot’s initiating behavior. 

Based on the joint participation state, the robot moved and spoke first to the 

visitor in each trial. Since the robot spoke first, its visitor quickly realized that the 

robot wanted to talk to him/her and thus listened to the robot. Here, it is important 

to determine whether the robot spoke first at the proper position and timing.  

We asked the two coders who classified all 75 trials whether the robot spoke 

first to the visitor at the proper position and timing. For each trial, they classified 

the position and timing at which the robot first spoke into two cases: proper and 

improper.  

Third, we evaluated whether maintaining of the participation state was 

achieved. As discussed above, after starting the conversation, the robot should 

continue it until the end of its presentation. However, sometimes the visitor 

moved to another place, disrupting the conversation. For example, the robot 

showed the visitor the product (Fig. 15a in joint participation state PSJ = (1, 1)), 

but then the visitor moved toward the target product and disrupted the 

conversation (Fig. 15b, PSJ = (0, 0)). In this case, the robot must reposition itself 

to adjust the spatial formation (Fig. 15c) so that both are participating in the 

conversation again (Fig. 15d, PSJ = (1, 1)). 

We used the coding results for the participation state to determine whether the 

conversation was discontinued in each trial. The coders again classified whether 

the conversation was disrupted by the robot or the visitor. We also calculated how 

long it took for the robot to re-establish the conversation with its visitor. 
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Figure 16    Difference between coding and system recognition result 

5.4.2 User Evaluation 

The user evaluations included both subjective and objective assessments. 

 Subjective evaluation 

Participants completed a questionnaire for each condition after five interactions 

on a simple Likert scale of 1 to 7 that higher ratings are considered to be better. 

The questionnaire had the following items: appropriateness of the standing 

position when the robot greeted the visitor, appropriateness of the standing 

position when the robot explained the target product, and overall evaluation. 

 Objective evaluation 

In addition to the questionnaire, we focused on the following timings: (1) How 

much time does the robot take to initiate the conversation with the visitor? (2) 

After greeting, how much time does the robot take to prepare to explain the 

product? (3) How much time does the robot take to complete the entire scenario? 

The system recorded the time from the beginning to the first utterance, which is 

the time from the beginning of the experiment (the time of starting the robot 

system) to the time when the robot says the first word to the participant, the time 

from the end of the greeting to the explanations, which is the time from the end of 

the greeting utterance to the start of the explanation utterance, and the total time, 

which is the time cost in a whole trial. 

5.5 Result of System Evaluation 

5.5.1 Recognition accuracy of participation state 

Cohen’s Kappa coefficient from the two coders’ classification was 0.83, 

indicating highly consistent classification results. After the classification, to 

analyze the consistent trajectories for modeling, the two coders discussed and 
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reached a consensus on their classification results for the entire coding process. 

Then we compared their coding results with the system recognition results. We 

compared the recognition result of the system and the coding result of the coders 

and recorded the time of the two result matches as Tright. Accordingly, we define 

the rate of system accuracy as 

/right entireRecognitionAccuracy T T                               (9) 

The system’s recognition accuracy of the joint participation state was 90.2% of 

the coder’s coding results, proving that with our system, the robot can accurately 

recognize its relationship with its visitor. 

We analyzed the 10% difference and found that the system correctly recognized 

the changes in the participation state; the only difference was the timing of the 

changes (Fig. 16). In the two results, the changing of the joint participation state 

was the same, e.g., from (0, 0) to (1, 1). As the joint participation state changes, 

the timings of the changes in the two results were sometimes different. We 

calculated the difference in the time from its occurrence to its end, and the average 

was 1.210 +/- 0.399 sec (range from 0.067 to1.747 sec).    

5.5.2 Appropriateness of robot’s initiating behavior 

Cohen’s Kappa coefficient from the two coders’ classification was 0.91, 

indicating that their classification results were highly consistent. After the 

classification, the two coders discussed and reached a consensus on their 

classification results. Their coding result shows that in 69 trials (92.1%), the robot 

behaved appropriately.  

In the six trials in which they thought the robot failed to behave 

appropriately, the robot first approached from the non-frontal direction (Fig. 17a). 

As the robot came nearer, the visitor suddenly turned around and passed and 

ignored it (unnoticed). There was a moment during which both the robot and the 

visitor were in each other’s frontal zone (Fig. 17b). However, since the visitor 

moved very quickly, there was a system delay before the robot spoke. When the 

robot finally greeted the visitor, it was a little too late (Fig. 17c). 

5.5.3 Maintaining the participation state 

The classification results of the two coders for the participation state showed 

that in 62 of 75 trials the conversation was disrupted, i.e., the joint participation 
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Figure 17 Inappropriate cases of robot’s initiating behavior 

 

state PSJ changed from (1, 1) to (0, 0). The coders also classified whether the 

conversation was disrupted by the robot or by the visitor. The coding results of the 

two coders were identical, showing that in all 62 trials, the visitor moved and 

interrupted the conversation.  

When its visitor moves, the robot should follow him/her to readjust the spatial 

formation and thus re-establish the conversation as soon as the visitor stops. We 

calculated the time from when the visitor stopped to when both the robot and the 

visitor began to participate in the conversation again. The average of this re-

establishing time was 4.613 +/- 1.267 sec (range from 1.500 to 9.800 sec). 

5.6 Result of User Evaluation 

We used a Shapiro-Wilk test to preliminary analyze the experiment data, and 

confirmed that each set of data is normally distributed (p >.05 in all the data sets) 

before conducting further analysis. 

5.6.1 Verification of prediction 1 

Our first prediction was that the proposed model for initiating conversation will 

outperform the alternative methods in the following areas: feeling of 

appropriateness of the standing position when the robot greets the visitor, 

appropriateness of the standing position when the robot explains the target 

product, and overall evaluation. 

For the “overall evaluation” score (Fig. 18), we conducted a repeated measures 

ANOVA and found a significant main effect (F(2,28)=9.125, p=.001, partial η2 

= .395). A multiple-comparison by the Bonferroni method revealed that the score 

for the proposed condition was significantly higher than that for both the guide 

(p=.021) and best-location (p=.002) conditions. No significant difference was 
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Figure 18 Overall evaluation 
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Figure 19 Appropriateness of              Figure 20 Appropriateness of 

   standing position when it greeted         standing position when it explained 

found between the guide and best-location conditions (p=.5). Therefore, our first 

prediction was supported. 

For “appropriateness of standing position when it greeted” (Fig. 19), a repeated 

measures analysis of variance revealed a significant main effect (F(2,28)=4.697, 

p=.017, partial η2=.251), but a multiple-comparison by the Bonferroni method 

showed only non-significant differences (proposed vs. guide: p=.706, proposed 

vs. best-location: p=.058, and guide vs. best-location: p=.199). 

For “appropriateness of standing position when it explains the target product” 

(Fig. 20), a repeated measures analysis of variance revealed a significant main 

effect (F(2,28)=9.126, p=.001, partial η2=.395). The Bonferroni method showed 

a significant difference between the proposed and best-location methods (p=.003), 

but other comparisons were not significant (proposed vs. guide: p=.209 and guide 

vs. best-location: p=.111). 

5.6.2 Verification of prediction 2 

Our second prediction was that our proposed model of initiating conversation 

will decrease the time from the beginning to the first utterance (Tinitiate) compared 

to the alternative methods. 
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Figure 23 Average of Tentire 

For our second prediction (Fig. 21), Tinitiate averaged 6.333 sec in the proposed 

condition, 8.037 sec in the guide condition, and 15.363 sec in the best-location 

condition. We conducted a repeated measures ANOVA and found a significant 

main effect (F(2,148)=108.252, p<0.001, partial η2 = .594). A multiple-

comparison by the Bonferroni method revealed that the Tinitiate of the proposed 

condition was significantly less than that of both the guide (p<.001) and best-

location (p<.001) conditions and that it was significantly less for the guide 

condition than for the best-location condition (p=.021). Thus, our second 

prediction was supported. 

5.6.3 Verification of prediction 3 

Our third prediction was that the proposed model of initiating conversation will 

decrease the time from the end of greetings to explanations (Tprepare) compared to 

the alternative methods. 

For our third prediction (Fig. 22), Tprepare averaged 18.345 sec in the proposed 

condition, 23.209 sec in the guide condition, and 14.568 sec in the best-location 

condition. We conducted a repeated measures ANOVA and found a significant 
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main effect (F(2,148)=38.160, p<0.001, partial η2 = .340). A multiple-comparison 

by the Bonferroni method revealed that the Tinitiate levels of both the proposed and 

best-location conditions were significantly less than that of the guide (p<.001) 

condition and that it was significantly less for the best-location condition than for 

the proposed condition (p=.001). Thus, our third prediction was partially 

supported. 

5.6.4 Verification of prediction 4 

Our fourth prediction was that the proposed model for initiating conversation 

will decrease the total time (Tentire) compared to the alternative methods. 

For our fourth prediction (Fig. 23), Tentire averaged 56.459 sec in the proposed 

condition, 62.747 sec in the guide condition, and 61.431 sec in the best-location 

condition. We conducted a repeated measures ANOVA and found a significant 

main effect (F(2,148)=22.464, p<0.001, partial η2 = .233). A multiple-comparison 

by the Bonferroni method revealed that the Tentire of the proposed condition was 

significantly less than both the guide (p<.001) and best-location (p<.001) 

conditions. But the comparison between guide and best-location was not 

significant (p=.708). Thus, our fourth prediction was supported. 

5.6.5 Summary 

In summary, our proposed system was evaluated as the best method overall 

among those compared. Its effect in the overall evaluation can partially be 

explained by the difference between the proposed and best-location conditions in 

the appropriateness of the standing position when the robot explained the target 

product. However, this does not account for the difference between the proposed 

and guide conditions. And for the appropriateness of the standing position when 

the robot greeted the participant, only an almost significant result (p=.058) 

between the proposed and best-location conditions could be found. The results for 

Tinitiate, Tprepare, and Tentire show that with the proposed system, a robot can 

initiate conversation much more quickly than in the other two conditions and that, 

moreover, the guide condition outperforms the best-location condition. In 

addition, using the proposed system the robot completed the interaction with the 

visitor much more quickly than with the other two methods. This may also 

partially explain the results of the overall evaluation. We consider that prompt 
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reaction behaviors from the robot, depending on the participation state, have a 

strong positive impact on an interaction.  

Thus, our proposed model was evaluated as the best approach. 

6 Discussion 

6.1 When will this capability be used? 

We believe that the capability of a robot to naturally initiate conversation is a 

major function to be implemented in future social robots. Although many other 

research projects have assumed that people and robots have already met and 

started interaction, this is generally not the case in the real world. Perhaps at an 

early deployment phase robots might not need to initiate interaction by 

themselves, since people would be interested in their novelty and approach them. 

In such cases, robots do not need to deal with the constraints of spatial 

configuration in order to initiate interaction. 

However, when robots actually do start to work in the real world without 

attracting so much attention, people will often not initiate interaction by 

themselves. In such cases, robots will often fail to initiate interaction [25]. This 

problem will be more serious when the robot has a concrete role, e.g., shopkeeper. 

The shopkeeper scenario used in this study is one future situation where a robot is 

expected to play such a role. There are many other situations that involve a first 

meeting, such as a tour guide in a museum, a shopping assistant, and nursing care 

in a hospital, all of which have been considered applications of social robots in 

past research. 

In our observations, we have found that the front and sight zones were stable in 

different environments and situations. That means it is possible to use these 

models for social robots working in many situations, as mentioned above. As for 

the gaze zone, although its parameters are dependent on the environment, we can 

also easily use it by first identifying the proper parameters for each situation. 

6.2 Limitations 

First, in our experiment, there was only one visitor in the shop, while in a real 

shop there might be multiple customers at any given time. A greater number of 

people in the environment would create several difficulties, such as obstacles for a 
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moving robot, determining the target visitor among several people, and 

interruptions by other visitor when the robot is approaching the target visitor. In 

this paper, we did not provide models to solve this problem. This is certainly a 

limitation of our model. However, it would be possible to extend our model by 

adding several functions provided by other researchers. For example, when a 

person becomes an obstacle for the robot that is approaching a target visitor, the 

robot would be able to avoid the person by simply using a path-planning or 

collision-avoidance mechanism. In such a situation, the robot might need to keep 

a distance from other persons as it talks to the target visitor. Overcoming such 

limitations would be necessary before adapting our system to more crowded 

situations. As for decision making, we need to create a high-layer controller to 

find the appropriate target among people. This is out of this research’s scope, but 

some past research works such as estimating visitors’ state would be useful for 

this kind of mechanism. How to deal with an interruption by other visitors would 

depend on the robot’s applications; if the robot is working as a shop employee, it 

would be better to change the target to the person and immediately start 

conversation. If the robot is working in a special service such as welcoming a 

VIP, the robot should not change the target. Actually, in the meeting scenario, 

when the host started approaching the visitor, staff members of the research 

institute sometimes walked through the lobby and passed by. As future work, by 

further analyzing these data or conducting additional experiments, we could create 

such a high-layer controller to help the robot make decisions when there are 

multiple people in the situation.  

Second, the decoration of our shop is very simple and there were only three 

products arranged separately. Such situations are commonly found in the real 

world. For example, when a robot works as a staff member in a gallery to explain 

individual artworks hanging on the wall to the visitors, our model can help the 

robot to recognize the focus of the visitor’s attention correctly. On the other hand, 

there are certainly many environments in which several objects exist within the 

view of a single visitor simultaneously. For example, in a real shop, the goods 

might be placed more compactly, e.g., four laptop PCs on the same desk or dozens 

of displays hanging on the wall close to each other. In this case, there might be 

multiple products in a person’s transactional segment simultaneously, making the 

detection of the person’s focus of attention more complicated. We believe it is not 
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always necessary for the robot to recognize the one specific object the visitor is 

looking at; recognizing the aggregation that the visitor is paying attention to is 

enough for the robot to provide basic service. Actually, in our daily life, in many 

cases it is not necessary for the clerk to know the customer’s focus of attention at 

such a precise level. Based on our model, the use of gaze detection would help the 

robot to further improve the recognition accuracy of the visitor’s focus of 

attention. Even if stable gaze detection is still difficult, such a function enables the 

robot to limit the candidates of objects to which the person pays attention. For 

example, with such a function the robot might be able to recognize whether the 

visitor is paying attention to the apples or oranges, and this could help the robot to 

provide services more appropriately. 

Third, since our proposed model was tested in a specific scenario, its 

generalizability is limited. Perhaps the context affects the preferences for a robot’s 

behavior. For example, in a busy business scenario, the always starting 

interaction at the best location to explain condition might work better than the 

proposed model. We believe that our shopkeeper scenario is rather neutral, so it 

probably reflects interaction in many daily scenarios, but this needs verification.  

As we mentioned in the paper, the parameters in our model dealt with Japanese 

people and our own robots. But when they are adapted, adaptation parameters 

must be considered. For instance, factors such as cultures, type of robots and 

environment would influence parameters. 

One may need to adjust the parameters when using robot for people from other 

cultures. For example, when the model is to be used in the countries such as The 

Netherlands and Denmark, the average height of people is much taller than Japan. 

John et al., suggested that height is a significant determinant of personal space 

[36], thus we consider that distance parameters retrieved from our study might 

need to be adjusted when using to interact with people of significant different 

height to make sure the interlocutors feel comfortable. 

We only evaluated the model with our own humanoid robot, while others may 

use other type robots to interact with people. Different appearance could influence 

people’ feeling and attitudes towards the robots [37, 38]. It is proper to imagine 

that a robot which has a lovely appearance of a famous cartoon character such as 

Mickey Mouse might easily attract many people to interact with it with joy. While 

a robot with a horrible appearance might sometimes frighten some people or make 
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them feel uncomfortable. We suppose that these different feelings and attitudes 

caused by the different appearance of robots might also influence some 

parameters of the model. For example, we expect that it might be better to set the 

talking distance parameter for a horrible robot bigger than that for a lovely robot, 

but more evidences are required when one consider adjusting parameters. 

The environment might also have influence on the parameters that used in the 

models. For example, when using the models in environments that everyone need 

to keep quiet, such as in a museum, library or a gallery, even there are not many 

people around, apparently it is not proper for the robot to greet a person from a 

long distance. It would also be better to reduce the distances in the models so that 

the robot could greet and then talk to other people in a low voice. 

 

7 Conclusion 

In summary, this article reported on how a robot can initiate a conversation 

with people. The contribution that makes this possible is a clear set of guidelines 

for how to structure a robot’s behavior to start and maintain a conversation. This 

knowledge can be used by designers to create robots capable of engaging in a 

conversation with a person, possibly toward integrating robots into domestic and 

public environments. 

More specifically, we first studied natural interaction at the moment of 

initiating conversation. In a shopkeeper scenario where a salesperson meets a 

customer, we then modeled natural human interaction. Our model was 

implemented in a humanoid robot and tested in an evaluation experiment. We 

compared our proposed model with two baseline models. The experimental results 

verified our proposed model as the best with respect to its more appropriate 

behaviors and the smallest time delay. The recognition accuracy of the 

participation state in the system evaluation was high, showing that the model can 

be used to recognize an individual’s participation state in a conversation. 
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