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What kind of floor am I standing on? 

Floor surface identification through full-body motions of a small 

humanoid robot 

This study addresses a floor identification method for small humanoid robots that 

work in such daily environments as homes. The fundamental difficulty lays in a 

method to understand the physical properties of floors. To achieve floor 

identification with small humanoid robots, we used inertial sensors that can be 

easily installed on such robots and dynamically selected a full-body motion that 

physically senses floors to achieve accurate floor identification. We collected a 

training data set over ten different kinds of common floors in home environments. 

We achieved 85.7% precision with our proposed method. We also demonstrate 

that our robot could appropriately change its locomotion behaviours depending 

on the floor identification results. 

Keywords: floor identification, small humanoid robot 

1. Introduction 

Sensing diversity achieves robust recognition functions for robots in various 

environments. Many types of sensors exist for robots, such as depth sensors, laser range 

finders, RGB cameras, and microphone arrays. One typical example that shows the 

importance of sensing diversity is Kinect, with which researchers can easily use depth 

information. Such inexpensive depth sensors dynamically increase the sensing ability of 

many robots. Combinations of existing and cheap depth sensors enable high-quality 

sensing systems. Therefore, we believe that increases in sensing diversity will 

contribute to advances in robotics research fields. 

Sensing through physical interaction is one unique approach to increase the sensing 

diversity of robots. This approach is often used for small robots, such as pet and hobby 

types, because physical interaction with them is an essential mode of communication. 

The final publication is available at 
http://www.tandfonline.com/doi/abs/10.1080/01691864.2014.996601?journalCode=tadr20



For example, researchers found that physical interaction with robots is useful in therapy 

and for enjoyment [1, 2]. Related to understanding such physical interactions between 

small robots and people, researchers developed sensing mechanisms to recognize 

human gestures [3, 4], full-body gestures [5], attitudes toward a robot [6], and a 

person’s identification [7]. 

However, unlike understanding the physical interactions between small robots and 

people, few related works have addressed understanding environments for interaction 

with robots [8-10]. Since these works were only conducted with wheel-type robots, the 

kinds of physical interaction between robots and environments are such simple uses as a 

tactile probe or changes of forward/rotation speeds during locomotion. No research has 

focused on understanding the physical interaction between environments and such non-

wheel-type robots as humanoid or multi-legged robots that can physically interact with 

various environments. We note that humanoid robots need to select appropriate walking 

motions depending on the floor surface; different from wheel-type robot, it is difficult to 

sense floor surfaces through locomotion before understanding floor surfaces for small 

humanoid robots, which did not have enough sensing capabilities. In other words, 

increasing of a sensing diversity such as floor surface identification would contribute to 

realize appropriate walking motion selections for such small humanoid robots. 

 

Fig. 1 Floor surface identification through physical interaction 

 

t
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In this paper, to increase the sensing diversity of small robots, we propose a method that 

identifies an environment’s property, i.e., its floor surface, by the full-body motions of a 

small humanoid robot (Figure 1). We though the number of unique points of this paper 

is three: 1) a use of a small humanoid robot to identify floor surfaces. Past research 

works which used humanoid robots to identify floor surfaces are limited to large 

humanoid robot with high sensing capabilities (details are described in next section). 

However, we tackled floor identification with only inertia sensors by focusing on 

physical interaction with the environments; this approach can be applied to other kinds 

of small humanoid robots.2) Physical interactions with environments through full-body 

motions. Different from large humanoid robots, small humanoid robots can easily 

interact with environment through full-body motions. Such interactions enable robots to 

gather features from sensors without locomotion motions; to begin with, humanoid 

robots could note use appropriate walking motions if a floor surface was unknown. 3) 

Iteratively narrowed down floor surface candidates using different kinds of full-body 

motions. This idea is inspired by human sensing actions by physical interactions; for 

example, a person can identify floor surfaces without visual information by different 

kinds of physical interactions, such as stamping or stroking.  

The rest of our paper is structured as follows. Section II describes related work, and 

Section III introduces our proposed method that uses inertial sensors to identify floor 

surfaces through full-body motions. Section IV presents our experimental methods, and 

Section V presents the results. Section VI provides a discussion, and Section VII 

summarizes the contributions. 
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2. Related work 

Much research has measured environment properties using visual or distance 

information [11-13]. For example, Kuroki et al. proposed a method that identifies the 

surfaces where a robot can walk by stereo camera systems [14]. Okada et al. also 

developed a system that identifies flat floor spaces using a stereo camera system [15]. 

Hasegawa et al. used a small number of laser range finders with mirrors to find objects 

on a floor surface [16], and Yokoya et al. used multiple robots to efficiently construct 

3D maps of an environment including its floors [17]. These research works enable 

robots to accurately measure floor properties. 

From the viewpoint of increasing a small robot’s sensing diversity, several 

researchers focused on physical interaction with environments to measure their 

properties.  For example, DuPont et al. identified floor surfaces using the 

forward/rotation changes of a wheel-type robot [8]. Giguere installed a simple tactile 

probe on Roomba to identify various floor surfaces in a home environment [18]. They 

mainly focused on identifying floor surfaces because they are directly related to the 

locomotion planning of small robots. 

However, different from our study, these research works which focused on 

physical interaction with environments to identify floor surfaces are limited to wheel-

type robots. Such non-wheel-type robots as humanoid or multi-legged robots can 

execute more complex motions than wheel-type robots, and with those motions, gather 

various kinds of sensor data to accurately identify floor surfaces. For example, people 

can more accurately identify floor surfaces using such full-body motions as stamping 

their feet than driving over a floor by car or riding over it by bicycle. We propose a 

method to identify floor surfaces through such physical interactions as full-body 

motions with environments for non-wheel-type robots such as a humanoid robot; this 
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concept is also a unique point of the paper, which focused on physical interactions 

between a small humanoid robot and environments. 

 

3. Identification of interaction floor 

3.1. Architecture  

We propose a method to identify the floor surface on which a robot is standing by 

phasing the reductions of candidates, i.e., iteratively eliminating floor surfaces from a 

pool of candidates. Fig. 2 shows an overview of our implemented system with inertial 

sensory information. It selects an appropriate motion to gather the sensor data used to 

reduce the set of candidates (Section 3.2) and calculates the floor surface features by a 

time series of the inertial sensor data gathered by the selected motion (Section 3.3). 

These features identify floor surface candidates by a decision tree classifier that 

includes combinations of the current candidates and reduces the set of candidates 

(Section 3.4). The system finally identifies the floor surface on which the robot is 

standing by repeating these winnowing processes until only candidate remains.  

Note that our proposed method assumes that only one floor surface exists while walking, 

and the data from the physical interaction were gathered beforehand. 
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Fig. 2 Overview of proposed method 

 

3.2. Motion selection  

Our proposed method selects a motion to gather sensor data to identify floor surfaces 

from candidates. In this paper, we prepared four kinds of full-body motions that are 

designed to physically interact with an environment: bending and stretching, lying down, 

tossing and turning, and stamping (Figure 3).  

The reasons of why we chosen these four motions are as follows. Basically we referred 

to behaviours of people, which are used to investigate floor properties without hands 

with preliminary testing with participants; we decided two motions, bending and 

stretching and stamping from observations of their behaviours. Moreover, we also 

focused on behaviours of people on beds. In such situations, we can estimate properties 

Inertial sensors

Motion selection

Feature extraction

Candidates = 1 

Reduction of candidates

Identification of floor surface

Yes

No

Candidate identification
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of beds and bedclothes via whole-body motions such as lying or tossing and turning. 

Different from large-sized robots, small-sized robot can easily conduct such behaviours; 

therefore we added these behaviours as full-body motions for the robot. 

To identify the interacting floor surface, the system selects an appropriate full-body 

motion from above four motions (i.e., bending and stretching, lying down, tossing and 

turning, and stamping) to gather sensor data by considering the classifier reliability (the 

details will be described Section 3.4). At the first physical interaction with an 

environment, the candidates include all floor surfaces therefore a motion which has 

maximum classifier reliability towards the combinations of all floor surfaces is used to 

gather sensor data. After reducing the candidates, the system again selects an 

appropriate motion which has maximum classifier reliability towards the remaining 

candidates to gather suitable data to identify the interacting floor surface. 

 

 

(a) bending and stretching 
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(b) lying down  

 

(c) tossing and turning 

 

(d) stamping  

Fig. 3 full-body motions 
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3.3. Feature extraction  

In this research, we calculated the first and second derivatives of the time series sensor 

data. We simply employed the two features of the sensor data of both time series, i.e., 

the mean and standard deviation to three kinds of sensor data: raw data, and the first and 

second derivatives of the time series of sensor data. They are defined as: 
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where s(t) is the inertial sensor data (raw data, first derivative data, and second 

derivative data) at times t, and n are the amount of data in the time period. We used six 

kinds of features f (r,d1,d2,r,d1,d2) from each sensor to identify the floor surface.  

 

3.4. Candidate identification and reduction of candidates  

We applied a C4.5 decision tree classifier [19], which is widely used in robotics, to 

correctly identify the candidate that is interacting with the robot at each time step. This 

algorithm builds decision trees from training data set, based on the concept of 

information entropy. Based on the normalized information gain, the decision threes 

have node to split the classes from the training data. Each node automatically selects 

extracted features which are appropriate to split the classes, therefore this method is 

useful for a situation when it is still unknown, which features are appropriate for 
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classification.  In our method, mean and standard deviation of each sensor data are used 

as features to build decision trees.  

We prepared multiple decision trees that considered all of the combinations among the 

candidates in advance of their phased reductions during the voting process. Each 

decision tree includes at least two classes, and thus the number of decision trees is 

calculated by this function: 
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xNcCMnMnNumOfTree  (3), 

where Mn is the number of the full-body motion Nc is the number of classes, i.e., the 

number of candidates, and C(Nc, x) is the number of possible combinations of x from a 

set of Nc.  

In our proposed method, the system stores the results from a decision tree using the 

extracted features to reduce the candidates. The candidate at each time step is calculated 

as 

)),,,,,(,( )(  2121 ddrddrfandidatesRemainingCdecisiontCandidate   (4), 

where decision is a function that outputs a candidate using a decision tree classifier that 

includes the RemainingCandidates. In the first process, RemainingCandidates includes 

all candidates: RemainingCandidates = {A, B … Nc}. 

Next, the system narrows down the floor surface candidates based on their 

reliability. The reliability of each candidate is calculated from a confusion matrix of the 

decision tree classifier. For example, the confusion matrix of the decision tree classifier 

shown in Table 1, reliability of “floor A” is 80% and “floor B” is 20 % when the 

decision tree classifier’s result was “floor A.”  

Table 1 Confusion matrix example 

A B  

80 20 floor A 

40 60 floor B 
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If a reliability is lower than a threshold, the candidate is removed in the next 

calculation process. The threshold value is defined as 

)/(1  datesNumOfCandiTh  (5), 

where NumOfCandidate is the current number of candidates and is a coefficient for 

the threshold calculation to increase the speed of convergence. The rest of the 

candidates are defined as 

)})((|{ ThcandidateRatiodidateCurrentCancandidate

andidateRemainingC




 (6), 

where CurrentCandidate is the set of the current candidates. 

If RemainingCandidate includes more than two candidates, the system repeats 

the above processes by selecting a motion to gather sensor data until only one candidate 

remains. To select a motion for the next calculation, the system considers the values of 

the average recognition ratio toward RemainingCandidate and its standard deviation 

calculated by each classifier. For example, in a case of table 1, average recognition ratio 

is 70% and standard deviation is 14.14. The system selects the motions with the largest 

average recognition ratio towards RemainingCandidate for identification (if the number 

of selected classifiers exceeds 2, it uses the minimal standard deviation from them). We 

note that at the first interaction between the robot and the environments, the system 

selects a full-body motion with the largest average recognition ratio of all the floor 

surface candidates. 

We describe an example case where the system identifies a ceramic tile from ten 

candidates. Firstly the robot selected "stamping" motion to gather sensor data towards 

the combinations of all floor surfaces because it has maximum classifier reliability for 

ten candidates. The robot extracted features from sensor data through the stamping 

motion. Through these processes, RemainingCandidate is reduced to two kinds: ceramic 

tile and tatami. The robot again selected the stamping motion to gather sensor data 
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towards the combinations of ceramic tile and tatami because this motion also has 

maximum classifier reliability for the candidates. Finally, the robot identifies the floor 

surfaces as "ceramic tile." 

 

4. Experiment methods 

To investigate our proposed method’s performance, we collected data when a small 

humanoid robot physically interacts with various floor surfaces. 

4.1. Robot hardware  

For the data collection, we used a small human-like robot called Robovie-MA (Fig. 4) 

that has two arms (4 DOFs for each), a body, a waist (2 DOF), and two legs (6 DOF for 

each).  To record the inertial sensor data during the interaction, we attached two 2-axis 

acceleration sensors (ADXL202E, ANALOG DEVICES Inc.) to its body (Fig. 4). The 

sensor arrangements are designed to record 3-axes (X, Y, and Z) using two inertial 

sensors with 60-Hz sampling rates (Fig. 4). Therefore, the system calculated 18 features 

from the physical interactions between the robot and the environments. We adopted the 

simple moving average method as a kind of low-pass filter to reduce the noise of the 

sensor data. In this work, we used three steps data to calculate the average values. 

 

2-axis acc. sensor 

1

2-axis acc. sensor 

2

X

Y

Z
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Fig. 4 Robovie-MA 

4.2. Data collection procedures  

For the data collection, we used ten kinds of floor surfaces found in home 

environments: ceramic tiles, linoleum, wood, tatami mats (a type of mat used as a 

flooring material in traditional Japanese-style rooms), cushions, bedding, carpets, bath 

mats, blankets, and artificial turf. We installed these floor surfaces to a flat place as 

shown in figure 5. 

The robot executed for four kinds of full body motions on each floor (described in 

Section 3.2) to gather the inertial sensor data 60 times. Finally, we gathered a data set 

comprised of 2400 sensor data (60 times x 10 floors x 4 motions).  Figure 6 and 7 

shows acceleration data when the robot used the full-body motions on the bathmat and 

the robot used the stamping motion on the different surfaces; as shown in the figures, 

properties of sensor data are different due to the floor surfaces; for example, frequencies 

and maximum values of XYZ data are different between the floor surfaces. These 

differences are essential to identify floor surfaces in our method; therefore proposed 

method selects an appropriate full-body motion to gather sensor data to identify 

interacting floor surfaces. 

 

         

    (a) ceramic tile            (b) linoleum                  (c) wood                  (d) tatami mat 
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     (e) cushions                 (f) bedding                (g) carpet                    (h) bath mat 

  

        (i) blanket                (j) artificial turf 

Fig. 5 Floor surfaces for data collection 

 

 

 (a) bending and stretching  
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(b) lying down 

 

(c) tossing and turning  
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(d) stamping 

Fig. 6 Sensor data with stamping motion at different floor surfaces. The unit of Y axis is 

LSB value of acceleration sensor, the range is 128 (+2G) to -127(-2G).  

 

(a) ceramic tile 
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(b) futon 

Fig. 7 Sensor data with stamping motion at different floor surfaces. The unit of Y axis is 

LSB value of acceleration sensor, the range is 128 (+2G) to -127 (-2G). 

 

4.3. Experimental design and data analysis  

In the experiment, we measure performance of our floor surface identification though 

off-line process. For this purpose, we conducted a 5-fold cross-validation for gathered 

data. We used a 1920 data set (48 times x 10 floors x 4 motions) to construct decision 

tree classifiers (these processes can be done before the experiment but not in real time) 

and a 480 data set (12 times x 10 floors x 4 motions) to test the identification in each 

validation.  

At the first step, the system selects an appropriate full-body motion to gather 

inertial sensor data toward the candidate which includes all floor surfaces. 
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Inertial sensor data was replayed by the collected data, and the system reduces the 

candidate floor surfaces based on the sensor data. Then, the system again selects an 

appropriate full-body motion to gather inertial sensor data towards the remaining 

candidates until identifying the candidate. The maximum number of calculation cycles 

is 12; if the system failed to reduce the number of floor surface candidates to one during 

the 12 calculations, it selects the floor surface with the maximum ratio from the 

candidates as an identification result. We determined the coefficient of in Eq. (6) to 

be 2.5. These parameters are based on heuristic tuning with the test data. 

In this experiment, we prepared four alternative methods to investigate the 

effectiveness of our proposed method. These methods only used one full-body motion 

to gather the sensor data, unlike the proposed method that selected full-body motions to 

gather sensor data that depend on the floor surface candidates. We compared the 

alternative methods to reveal the effectiveness of selecting full-body motions to identify 

floor surfaces. 

 

5. Results 

5.1 Performance evaluation  

Table 2 shows the performance of each method (Precision, Recall and F-measure) and 

Figure 8 shows the results of the floor surface identification. Table 3 shows a confusion 

matrix with the proposed method, which achieved 85.7% floor surface identification 

through physical interactions; the alternative methods achieved 80.7%, 65.8%, 46.5%, 

and 73.8% precisions. In the proposed method, wrong identification mainly occurred for 

relatively hard floors such as ceramic tile, linoleum and tatami mat. On the other hand, there 

are good performances for soft floors such as cushions and blanket. 
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Table 2 Average success ratio of methods 

  Precision Recall F-measure 

Proposed method 85.7  87.4  86.0  

Bending and stretching only (a) 80.7  82.2  80.5  

Lying down only (b) 65.8  67.0  65.8  

Tossing and turning only (c) 46.5  47.6  45.8  

Stamping only (d) 73.8  82.1  73.5  

 

Table 3 Confusion matrix of the proposed method 

 

 

 

a b c d e f g h i j  

44 1 13 0 0 2 0 0 0 0 a = ceramic tile 

4 43 13 0 0 0 0 0 0 0 b = linoleum                   

0 11 47 0 0 0 2 0 0 0 c = wood 

1 0 3 55 0 1 0 0 0 0 d = carpet 

0 0 0 0 60 0 0 0 0 0 e = cushions 

11 0 9 0 0 40 0 0 0 0 f = tatami mat 

0 2 1 2 0 0 55 0 0 0 g = bath mat 

0 0 0 0 2 0 0 58 0 0 h = bedding 

0 0 0 0 0 0 0 0 60 0 i = blanket 

0 0 0 0 3 0 3 0 2 52 j = artificial turf 
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Fig. 8 Identification rate of each floor 
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5.2 Frequency of use of motions   

Table 4 shows the ratio of the full-body motions in our proposed method. The ratios of 

bending and stretching and stamping are relatively higher than the other full-body 

motions, but all of them were selected as appropriate motions for floor surface 

identification during the calculations. For example, "Tossing and turning" showed 

higher reliabilities towards specific combinations of candidates, such as "Cushion" and 

"Blanket" than other full-body motions. In other words, this motion was appropriate to 

identify the floor surfaces from the combinations of soft floor surfaces. These results 

showed that mixing of various motions contribute to increase the performance of the 

proposed method in total.  

Table 4 Ratio of full-body motions 

  Usage rate 

Bending and stretching  32.9 

Lying down  19.0 

Tossing and turning 9.2 

Stamping 38.9 

 

6. Discussion 

6.1 Applications  

The identification of floor surfaces can be used to change/modify a robot’s motion. In 

particular, the locomotion planning of such non-wheel-type robots as a humanoid robot 

is strongly affected by the floor surfaces. Our proposed method will help such robots 

move in home environments that include various floor surfaces. 

Next we show an example application of our proposed method for a function 

that enables a small humanoid robot to use suitable movements depending on the floor 

surfaces. Fig 9(a) shows a robot walking on bedding. Since its motion is not stable, it 

falls down. After that, the robot used a stamping motion to gather sensor data to identify 
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the floor surface (Fig. 9(b)); after correctly identifying the floor surface, it used a 

crawling motion to move on it; the robot walked  over the bedding (Fig.9(c)).  

 

(a) robot falling down on bedding 

 

(b) robot uses stamping motion to gather sensor data 

 

(c) robot uses crawling motion to move on this floor surface 

Fig. 9 Examples of locomotion behaviors on bedding 
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Such applications can be realized by referring to past research that identified 

floor surfaces. However, as noted in the introduction, the unique point of our proposed 

method is increasing the sensing diversity for small robots.  Unlike typical methods, it 

does not need any visual or distance information to identify floor surfaces. For example, 

our proposed method can identify floor surfaces under complete darkness or those that 

easily change their form due to the robot’s weight, such as cushions. 

Combinations of our proposed method and past research will increase the 

sensing capability of small robots. Our proposed method enables greater robust sensing 

systems by collaborating with previous work. 

 

6.2 Scalability for number of candidates  

We evaluated our proposed method with data from ten floor surfaces using four full-

body motions. If the number of floor surfaces increases, our proposed method should be 

able to identify them, although it might require more interaction with the floor surfaces 

using more full-body motions. With more targets, since similar floor surfaces will also 

increase, more interaction with the floor surfaces is needed for identification. 

 

6.3 Scalability for number of candidates  

In total we gathered each 60 sensor data set for each floor (10 floors) with each full-

body motion (4 motions). To confirm the validity of the number of trials, we 

investigated differences between the data set. Figure 10 shows the plot data by using the 

first/second principal components. Circles represent data set gathered by each full-body 

motion (a= bending and stretching, b=lying down, c= tossing and turning, d= stamping). 

We note that contribution rate of them is 0.55, and the ratio of between-class variance 
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and within-class variance was 5.70. Figure 11 showed a part of floor data sets: futon and 

wood (a) and artificial turf and linoleum (b). As shown in the figures, the data sets 

gathered by each full-body motion at each floor are crowded; the differences of data 

sets within each floor are smaller than the differences of them between each floor. 

Therefore, we thought that the gathered data in the experiment would be enough to 

evaluate the performance of the proposed method, by considering the variances of 

gathered data sets. 

 

Figure 10 Plotted data with principle components  
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(a) Wood and futon          (b) Artificial turf and linoleum 

Figure 11 Plotted data of specific floor combinations 

 

6.4 Limitations  

Our proposed method identified floor surfaces through physical interactions with 85.7% 

accuracy, but we did not compare its performances with other state-of-the-art time 

series classification algorithms, such as Support Vector Machine [20], an existing 

method that uses inertia sensors to identify environments [18], and an approach that 

discriminates different textures using whisker sensors [21-23].  

Our method can only identify one floor surface because it assumes that a small 

robot interacts with just a single floor surface at a time. Moreover, winnowing 

candidates requires observation of a full-body motion within a certain time to find the 

differences between floor surfaces. We also evaluated our proposed method with one 

small humanoid robot with a specific sensor arrangement. If our proposed method is 

used with different kinds of robots, the parameters must be calibrated and the sensor 

positions adjusted. 
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Surface identification was conducted using an existing data set. Therefore, a 

registration process is needed beforehand, such as gathering physical interaction data 

with floor surfaces. Such processes are also needed for other types of floor surface 

identifications, such as vision-based systems, but our proposed method needs more time 

for registration than these vision-based methods. 

In this research work, we used a specific humanoid robot and inertial sensors. It 

would be difficult to share the same decision trees between different kinds of robots; we 

thought that our method can be applied to other kinds of humanoid robots with different 

sensors by rebuilding decision trees by using them. We note that one concern of our 

method is for a humanoid robot which is covered by soft materials. If the robot whole-

body is covered by sponge or silicon skins, inertial sensor data might become more 

similar between different kinds of floor surfaces. 

 

7. Conclusion 

We proposed a method that identifies floor surfaces through the physical interaction of a 

small robot. Our work’s unique concept is to increase the sensing diversity for non-

wheel-type small robots such as a humanoid robot; it focuses on the differences in the 

extracted features from the inertial sensor data during physical interaction to identify the 

floor surface on which the robot is standing. Our proposed method extracts the features 

from the inertial sensor data history and narrows down the floor surface candidates 

through physical interaction. We evaluated its performance, and our evaluation results 

showed that it identified floor surfaces through physical interactions with 85.7% 

precision. We believe these results demonstrated the concept that physical interaction 

with an environment is effective to increase the sensing diversity for robots by dealing 

with floor surface identification problem. Accurate floor surface identification would 
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contribute motion planning for robots, in particular small humanoid robots, which work 

on daily environments where various floor surfaces exist. 
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