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Abstract Safe navigation is a fundamental capability
for robots that move among pedestrians. The tradi-

tional approach in robotics to attain such a capability
has treated pedestrians as moving obstacles and pro-
vides algorithms that assure collision-free motion in the

presence of such moving obstacles. In contrast, recent
studies have focused on providing the robot not only
collision-free motion but also a socially acceptable be-

havior by planning the robot’s path to maintain a “so-
cial distance” from pedestrians and respect their per-
sonal space. Such a social behavior is perceived as nat-

ural by the pedestrians and thus provides them a com-
fortable feeling, even if it may be considered a decora-
tive element from a strictly safety oriented perspective.

In this work we develop a system that realizes human-
like collision avoidance in a mobile robot. In order to
achieve this goal, we use a pedestrian model from hu-

man science literature, a version of the popular Social
Force Model that was specifically designed to reproduce
conditions similar to those found in shopping malls and

other pedestrians facilities. Our findings show that the
proposed system, which we tested in two-hour field tri-
als in a real world environment, not only is perceived

as comfortable by pedestrians but also yields safer nav-
igation than traditional collision-free methods, since it
better fits the behavior of the other pedestrians in the

crowd.
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Fig. 1 The video frames and the illustrations show a real world
situation in which using a traditional collision-avoidance method
generated a possibly unsafe situation. (a) Initially, the pedestrian
did not notice the robot. (b) Then he unexpectedly found the

robot in front of him and felt unsafe although the robot had
already started to avoid him; (c) as a consequence the pedestrian
quickly moved aside and (d) looked at the robot with surprise.

1 Introduction

Safe navigation for mobile robots remains a major re-

search topic in robotics. Due to recent progress in fields
such as localization techniques, robots are now much
more capable of moving in real-world environments, en-

abling applications such as guiding people in museums
[1,2] and supermarkets [3], or delivery to offices [4].

Collision avoidance with respect to humans is an

essential element for safe navigation in human envi-
ronments. The traditional approach to robot collision
avoidance considers people as moving obstacles and ap-

plies collision-avoidance techniques. Various planning
[5–8] and prediction [9–12] techniques have been devel-
oped, and robots are capable of planning their trajec-

tories to avoid undesired physical contact with pedes-
trians.

However, we have experienced some difficulties when

using traditional collision-avoidance methods in real-
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world environments. Fig. 1 shows one of these trouble-

some circumstances, in which a pedestrian initially did
not notice the robot, and, when he eventually saw it,
was surprised and jumped aside to avoid it. In this set-

ting the robot was correctly following a collision free
trajectory, but its behavior was not perceived as safe
by the pedestrian. This and similar potentially unsafe

conditions, or better, conditions that convey a feeling
of being unsafe to people, usually arose when pedestri-
ans perceived the robot only when it was quite close to

them. Even if they did not lead to any collision, they
cause abrupt motions in pedestrians, that may be po-
tentially dangerous.

In this paper we are going to pose, and test, the
hypothesis that human-like collision-avoidance is indis-
pensable to avoid these situations that are perceived as

dangerous by pedestrians, and that, by causing sudden
reactions, may be potentially unsafe. We will thus claim
that human-like collision avoidance is indispensable for

robots to safely navigate among pedestrians, who ex-
pect other moving agents (pedestrians or robots) to
follow given “social norms”. An agent that does not re-

spect such social norms, despite having a good planning
capability for collision-free motion, would be perceived
to behave unexpectedly and generate possibly unsafe

behavior. While human behavior can involve complex
cognitive processes, human science studies show that
the resulting collision avoidance trajectories can be re-

produced to a good extent using simple models in which
each agent (i.e., pedestrian) only reactively avoids local
collisions [13].

In this paper, we apply the pedestrian model in-
troduced by [13], and briefly described in appendix A,

which was explicitly developed for relatively low-density
situations like those occurring in a shopping mall, to
achieve collision avoidance in a differential drive wheeled

robot with a humanoid torso, navigating through a hu-
man environment. The merits of using the pedestrian
model are twofold: first, since it is a model of human

social behavior, it is likely to produce human-like mo-
tion in a robot and thus provide comfortable feelings to
pedestrians in collision avoidance, as previous studies

[14,15] have shown. Second, since the pedestrian model
was developed to describe many-person settings, it can
be easily applied to such situations, that were not tack-

led or resulted in expensive path planning computa-
tions in the previous attempts to develop socially ac-
ceptable navigation systems. On the other hand, the

implementation of the pedestrian model on the robot is
not straightforward due to the limited perception and
locomotion capabilities of the machine with respect to

the human ones.

After determining which parameters values should

be used in the robot version of the model in order to ob-
tain trajectories as similar as possible to the pedestrian
ones, we explicitly verify that our system is perceived as

safer than traditional avoidance methods. We first test
it in single-person settings and ask to participants to
rate its performance compared to a traditional avoid-

ance method, and then operate it in a real world envi-
ronment to test that it does not cause any potentially
unsafe situation.

2 Related work

2.1 Collision-free navigation

Collision-free navigation techniques have been exten-

sively studied in robotics. A basic method is the dy-
namic window approach [5], whose extension and de-
velopment have been widely researched. Stachniss and

Burgard integrated path-planning into collision avoid-
ance [6], and Seder and Petrovic developed the time
varying dynamic window (TVDW) method by consid-

ering moving obstacles [7]. While the dynamic window
approach mainly takes into account a small neighbor-
ing area around the robot (usually a “stop distance”

within which the robot can stop), other approaches,
such as collision cones [8] and velocity obstacle [16],
consider the motion of objects far from this neighbor-

ing area. Many techniques have also been developed to
make planning computationally feasible, including the
D-Lite algorithm [17] .

Research efforts have also improved the prediction
accuracy of people’s future behavior. A basic method to
predict future behavior is to perform a velocity-based

linear projection [7,9] while other researchers have used
a pedestrian model to predict people’s future behavior
more accurately in tracking [10]. These methods pro-

vide reasonable approximations for short-term behav-
ior, but they are not reliable for long-term prediction;
to overcome this limitation, some researchers have used

statistical knowledge from a large amount of previously
observed trajectories in the environment [11,12].

Another approach is to refer to a model of peo-

ple’s behavior for planning or prediction. Henry et al.
[18] proposed a method to learn an effective planning
of robot navigation in a crowded environment using a

pedestrian crowd simulator, while Tamura et al. [19]
used a pedestrian model to predict people’s collision
avoidance toward the robot, allowing the latter to bet-

ter avoid pedestrians. Ratsamee et al. realized a colli-
sion avoidance behavior that uses a pedestrian model
taking also in consideration the body pose and face ori-

entation of pedestrians [20].
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Such planning and prediction techniques can pro-

vide collision-free trajectories to robots, but they do
not necessarily generate a behavior that resembles peo-
ple’s collision-avoiding strategies and norms. On the

contrary, the purpose of this study is not to use the
pedestrian model as a prediction tool, but to explicitly
introduce a human like collision avoidance behavior in

the robot in order to make its navigation perceived as
more natural and thus to avoid potentially unsafe situ-
ations.

2.2 Human-like social behavior in navigation

Following the seminal work of Hall on human interac-
tions [21], a few recent studies in robotics have repro-
duced human-like social behavior in human-robot inter-

action. Some of these works focused on the importance
of proximity and reported, for example, that people try
to maintain a 0.45 ∼ 1.2 m distance when interacting

with a robot [22,23], and a motion planning technique
considering such psychological constraints has been de-
veloped [14]. Pacchierotti et al. developed a robot that

avoids intruding into the personal space of a walking
person by starting to deviate from its path 6 m from
the on-coming person to create space [15]. Kirby et al.

proposed a constraint-optimizing method for person-
acceptable navigation for a mobile robot, which consid-
ers personal space as a social convention [24]. Pandey

et al. have developed a framework towards a socially
aware mobile robot by considering social conventions
such as human proximity guidelines and clearance con-

straints [25]. Qian et al. have developed a framework
for human-compliant robot navigation which considers
a set of safety strategies to gurantee human physical

safety and mental comfort [26].
From a different perspective, Lichtenthaler et al.

have focused on legibility and perceived safety in cross-

ing situations and show the effectiveness of legible mo-
tion in providing impressions of safety [27]. Rios-Martinez
et al. have developed a navigation method consider-

ing human comfort, by using a stochastic and adaptive
optimization algorithm [28]. Moreover, several learning
approaches are proposed; Henry et al. have used in-

verse reinforcement learning to learn navigation behav-
ior from a huge amount of example paths. They con-
firmed the effectiveness of the approach by using a re-

alistic crowd flow simulator [18]. Also Luber et al. take
a learning approach by using paths of people in public
space to realize socially-aware robot navigation [29].

However, these previous approaches suffer of two
limitations. First, they address only single-person sit-
uations and are difficult to apply to interactions with

many people, which are clearly the case in real-world

Fig. 2 Overview of our framework.

settings. Second, it has not been investigated whether
these human-like behaviors are indispensable for safe

navigation, or if they are just decorative elements not
required to safely deploying mobile robots in daily en-
vironments.

The present study addresses these two issues by us-

ing a pedestrian model that allows reproducing human-
like behavior even in many-person settings, and by test-
ing the proposed system in a real world environment to

reveal whether such human-like behavior is indispens-
able for safe navigation, checking if its more natural
behavior avoids generating sudden and potentially un-

safe motions in pedestrians.

3 Using the Pedestrian Model for socially
acceptable collision avoidance

3.1 Problem definition

The purpose of this paper is: To investigate the effect of
the introduction of a human-like collision avoiding sys-

tem for the deployment of a robot in a real world human
pedestrian environment. The proposed collision avoid-
ance system has thus to be able to avoid the pedestrians

in a way that is perceived as natural and safe by them.
Furthermore, the system has to be stable enough to be
deployed in safety in a real world environment, and the

presence of the robot in such an environment has not
to generate sudden and potentially dangerous motions
in the surrounding pedestrians.

In order to accomplish this goal we need to:

1. Calibrate a human-like collision avoidance model for
our robot: based on the results of [13] we assume that
the CP-SFM model (specified by Eqs. (1) and (3),

see appendix A) gives a good enough approxima-
tion of the pedestrians’ avoidance strategy, at least
for navigation in a shopping mall or similar environ-

ment. To account for specific interaction patterns
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with our robot, we perform experiments in which

human subjects interact (avoid a collision) with our
robot, and use the method of [13], as described in
section A.2, to find the values of parameters Ar and

Br that, substituted in Eq. (3), better describe how
pedestrians avoid our robot (section 3.3). Our hy-
pothesis for the implementation of an avoidance sys-

tem considered as natural and safe by the pedestri-
ans is to reproduce in the robot the same avoidance
behavior that pedestrians had with respect to it in

the calibration experiment. In order to do that, we
will correct the parameters Ar and Br to values Arc

and Brc that account for limitations in the robot’s

motion (section 3.4).
2. Provide a safety system: we use the CP-SFM model

to provide a collision avoidance felt as natural and

safe by the pedestrians, but this method has not
been developed to provide a safe navigation for a
robot system in the sense discussed by [30]. For this

reason we provide our method with a backup safety
system using the well-known traditional planning
method for safety of [7] (Section 3.5).

3. Evaluate the perception that pedestrians have about

the collision avoidance behavior of the robot: we per-
form controlled experiments with subjects to con-
firm that our system, which has been developed to

behave naturally, i.e. in a human like manner, is well
perceived by pedestrians. During the experiments
we compare our method with an efficiency oriented

one, and ask to the subjects to rate how comfortable
their interaction with the robot was (more specifi-
cally, if they could walk keeping their preferred ve-

locity, if they felt their path to be collision free, and
what was the overall evaluation of the robot’s be-
havior; section 4.1).

4. Test that the robot can be safely deployed in a real
environment: we conduct a field test to confirm that
our robot may safely navigate a pedestrian environ-

ment; furthermore we compare it to a traditional
avoidance method to test that it produces less sud-
den motions in the surrounding pedestrians (and

thus less possibly unsafe situations; section 4.2).

To accomplish tasks 1 and 2 we rely on previous con-

tributions [13,7], that have nevertheless to be adapted
to our system. Task 3 resembles the investigation per-
formed by [15], while task 4 may be considered the main

original contribution of our work. As described in sec-
tion 4.2, our main criterion for evaluating the safety
of the robot system is to test that it may be deployed

in the environment without disrupting the normal flow
and behavior of surrounding pedestrians; see our dis-
cussion in section 4.2 for a comparison with the usual

meaning given to the term safety in robot navigation,

as defined for example by [30].

Obviously this paper does not completely fulfill all the
requirements for a safe and socially acceptable navi-
gation system that may be used in a real world envi-

ronment for practical applications, and in section 5 we
discuss the problems that have to be coped with before
achieving such a goal.

3.2 Hardware

We used a 120-cm-tall, 60-cm-wide humanoid torso robot
whose mobile base is a Pioneer 3-DX (Active Media),
at a maximum velocity of 750 mm/s and a preferred

velocity of 700 mm/s (the maximum acceleration is
600 mm/s2). The pedestrian model needs information
about people’s positions far from the robot, which is not

easy to collect using only the robot’s on-board sensors.
Thus, we used eight laser range finders and applied the
human-tracking system described in [31].

3.3 Calibrating the Social Force toward the robot:

H-R (human-robot) model

We specifically calibrated the pedestrian model on human-

robot interaction with our robot to account for the po-
tential differences in the collision-avoiding behavior be-
tween a pedestrian and the robot with respect to the

inter-pedestrian interaction.

In the data collection experiments, performed in a
shopping mall corridor, the robot moved straight to-

ward a participant at 700 mm/s, and the participant
walked toward the robot starting from a distance of 18
m. Participants were instructed to walk freely toward

a goal located behind the robot, but were informed
that the robot would not change its course to avoid
collisions. Fourteen subjects participated to the exper-

iments, each participant repeating the trial nine times.
We used the genetic algorithm described in section A.2
to select the parameter values that maximize the simi-

larity among the trajectories generated from the pedes-
trian model and those obtained in the data collection.

Calibration yielded parameter values Ar=0.62,

Br=1.07, which generate a collision avoidance behavior
that does not qualitatively differ from the inter-human
values of [13] (Ah=1.13,Bh=0.71), at least for the head-

on encounter experiments that we performed to cali-
brate the robot. More in detail, since Ah > Ar, the
maximum interaction intensity is lower towards robots,

but since Br > Bh the interaction range with robots
is wider. It is nevertheless important to notice that for
the head-on experiments, the interaction distance d′ij of

Eq. (3) is typically in the order of ≈ 1 meter, for which
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the (Ah, Bh) and (Ar, Br) parameters yield very similar

values. We may thus assume that the behavior of pedes-
trians with respect to our robot is basically equivalent
to the inter-pedestrian one, even if we refer to section

5 for a discussion of the limitations concerning the use
of only head-on encounters for calibration.

3.4 Calibrating the force taking into account

locomotion capabilities

In our study, position information is provided by the
environmental human-tracking system [31], while the
robot controller (Fig. 2) converts the output of Eq. (3)

into velocity commands to navigate the robot. Namely,
the pedestrian model outputs the effect of the social
forces as an update in the Cartesian velocity (vx,vy),

and the controller translates it into a polar coordinates
velocity command (vp, ωp) to be implemented in the
wheeled locomotion used in our robot. To compute the

target velocity, the system should ideally use the H-R
parameter values in Eq. (3) However, the robot’s mo-
tion capability is limited by its hardware (e.g., slow ac-

celeration and inability to move aside by being a differ-
ential drive robot), while limitations and delays in the
perception system may affect the computation of the

interaction forces. For these reasons a straightforward
application of Eq. (3) with the H-R parameters (Ar,Br)
by the robot controller may result in real robot trajec-

tories quite different from those that would result from
a numerical integration of the equation using Ar, Br

(we will refer to this latter trajectory as the “ideal tra-

jectory”, meaning the trajectory that the robot should
ideally follow in order to resemble the behavior of pedes-
trians in the experiment of section 3.3).

To compensate this difference, we further calibrated
the values of the pedestrian model parameters to obtain

in the real robot system a trajectory as similar as pos-
sible to the “ideal” one. In order to do that, we numer-
ically computed a few trajectories in different settings

using the “ideal” H-R model (Eq. (3)) and fixed the pa-
rameter values used by the robot controller so that the
motion of the real robot was as close as possible to the

ideal one. As a result, we found that both the intensity
and range of the social force for the real robot should
increase to Arc= 0.93, Brc =1.61 (robot controller pa-

rameters), which are 1.5 times larger than the original
H-R model parameters, in order to reproduce as faith-
fully as possible the ideal trajectories in the real robot

system.

3.5 Safety system

The collision avoidance system described by Eqs. (1)
and (3) has not been designed to be safe in the sense

discussed in [30]. While the system described by the
equations is arguably collision free in the pedestrian
density of interest for the scope of this work, this is true

for the noiseless “ideal” trajectories, and could fail when
implemented in a robot with specific motion and sensor
limitations. Furthermore, the model has not been de-

signed to deal with pedestrians whose behavior is very
far from the norm (for example, very low attention lev-
els, or possibly dangerous curiosity driven approaches

to the robot). For these reasons we introduced in our
system a backup safety check.

In detail, the polar coordinate (vp, ωp) velocity com-
mand computed by the robot controller is examined
using a safety-check mechanism. We implemented this

safety system using the TVDW method [7], whose win-
dow time was set to 1.5 s, a time interval long enough
to stop our robot. For the safety implementation, the

pedestrian future positions were projected using their
average velocity from the previous 0.5 s. These parame-
ters were chosen on the basis of the maximum accelera-

tion and velocity of the robot, along with the precision
of the tracking system. In detail, since the maximum
velocity of the robot is 750 mm/s, and the acceleration

is 600 mm/s2, the robot can stop in 1.5 s even if a 200
ms delay occurs. We also empirically verified that a 500
ms average over the velocity output of the tracking sys-

tem provides the best information about the pedestrian
velocity, by filtering out noise.

The TVDW method uses the robot’s and pedestri-

ans current velocities to project their positions in the
future and computes a safe but maximally efficient path
for the robot. It does not include notions of “socially

acceptable distance” like those investigated by [15], so
in a head-on approach like those of sections 3.3 and 4.1
it will have a tendency to deviate later and less than

our method (or not to deviate at all, if the pedestrian
avoids the robot in advance). As a result we may ex-
pect, in normal conditions, the safety system to have

very little or no effect on the robot’s motion.

4 Evaluation

We conducted two different evaluation tests, in which
we compared the proposed method with the efficiency
oriented one of [7], which was implemented using the

same parameters of the safety system described in 3.5.

1. Evaluate the perception that pedestrians have about

the collision avoidance behavior of the robot: we use
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a controlled experiment with head-on collision set-

ting, in which the subjects are asked to rate the col-
lision avoidance behavior of the robot. The purpose
of this experiment is to test and evaluate our system

in a simple scenario before deploying the robot in an
uncontrolled real world environment, and also to re-
produce the results found by [15] while using a rule-

based model under a similar single person controlled
setting (the main difference between our scenario
and theirs is that in our work also the controlled

experiments with subjects were performed in a real
world environment, and not in the laboratory).

2. Test that the robot can be safely deployed in an un-

controlled real environment: we conduct a field test
to confirm that our robot may be operated in a real
world environment without disturbing the natural

flow of pedestrians. In the scope of this experiment,
our definition of safety diverges from the one of [30];
we are interested to check the occurrence of situa-

tions in which the robot causes sudden and possibly
dangerous movements in the surrounding pedestri-
ans.

4.1 Evaluation of comfortable feeling

4.1.1 Method

The evaluation was conducted in the same shopping

mall corridor used for data collection. Participants freely
walked toward a goal, while a robot moved from that
goal toward the point from which the participant started
walking, i.e. the robot and pedestrian had to avoid each

other to reach their target. Participants started walking
at a 18 m distance from the robot.

The experiment was conducted as a within-subjects

design, and the order of the sessions was counter-balanced.
25 Japanese subjects participated in the experiment (14
females and 11 males, average age 23.1 years with S.D.

5.6 years) and filled out a questionnaire for each ses-
sion after reaching the goal. In the questionnaire par-
ticipants graded their impressions of the behavior of

the robot towards them on a 1-to-7 point scale, where
7 stands for the most positive, 4 is neutral, and 1 is the
most negative impression, based on the following crite-

ria: 1) obstruction-free, 2) their own ability to maintain
their preferred velocity, and 3) overall evaluation.

4.1.2 Result

Under the TVDW condition, the average speed of the
robot was 0.65m/s and the one of the pedestrians was
1.17m/s. The average minimum distance between the

robot and pedestrians was 0.76m. Under the proposed

condition, the average speed of the robot was 0.65m/s

and the pedestrian velocity was 1.16m/s, while the av-
erage minimum distance between the robot and pedes-
trians increased to 0.87m.

Fig. 3 shows the questionnaire results. We conducted

a pair-wise t-test for each item of the questionnaire.
There were significant differences between the impres-
sion of the pedestrians when interacting with the robot

using the proposed method or with TVDW; in detail,
for obstruction-free we have (t(25)= 3.231, p=.004, r=0.54),
regarding whether they were able to walk at their pre-

ferred velocity we have (t(25)=3.180, p=.004, r=0.54),
and for overall evaluation (t(25)=2.964, p=.007, r=0.51).
The results suggest that the pedestrian model was fit
to the participants’ natural way of walking and allowed

them to walk at their preferred velocity, and for these
reasons they perceived the robot as obstruction-free.

Figs. 4 and 5 show the average robot and partic-
ipant trajectories during the collision-avoiding experi-

ment. The robot started moving from the left side, and
the participant started from the right side. Under the
proposed method condition, the robot started deviating

from its straight trajectory after four seconds, i.e., at a
distance of approx. 8 m from the pedestrian, a value in
agreement with the one reported in [15]. On the other

hand, under the TVDW condition, the robot’s collision-
avoiding behavior occurred much later: after t = 8 s,
neither the robot nor the pedestrian had deviated from

their straight path. Under this condition the pedestrian
deviated more strongly from the straight path (at t=12
sec), and the robot’s collision-avoiding behavior was re-

duced.

An analysis of these average trajectories suggests
that while under the TVDW condition the collision
avoiding load was mainly on the pedestrian, that clearly

felt the robot’s avoiding behavior to be too reduced
or too delayed, under the proposed method the colli-
sion avoidance load was mainly on the robot. As a re-

sult, as shown by the results of Fig. 3, the pedestrians
felt obstruction-free and could walk with their own pre-
ferred velocity. The method of [13] is intended to take in

account the reciprocity in collision avoiding when cal-
ibrated on pedestrian-pedestrian interactions (see also
[32] about the importance of reciprocity). Nevertheless,

our calibration process on single person human-robot
interaction seems to have led to an anticipation of the
collision avoidance behavior on the robot’s part, which

is well perceived by the pedestrians. The evaluation of
section 4.2 will show that our robot does not “over-
avoid” the pedestrians and can be stably deployed in a

multi-person real world environment.
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Fig. 3 Impressions from participants.

Fig. 4 Average trajectories under the proposed method.

Fig. 5 Average trajectories under the TVDW method.

4.2 Field test of safety in navigation

4.2.1 Method

This evaluation was conducted as a field trial in a shop-

ping mall, and thus the robot did not interact with in-
structed subject, but with uninstructed pedestrians of
a real world crowd. The robot was placed in a 10 x 20 m

area of a large corridor (Fig. 6) bordered on both sides
by restaurants and a variety of shops. The visitors were
mainly families, couples, and sightseers, all of whom

could freely walk down the corridor. The robot was au-
tonomous in the experiments except for the start signal
sent by an operator to trigger it to move. After send-

ing the signal, the robot started to move from points
A/B to B/A fully autonomously. We defined a single
movement from these points as one trial.

Our aim was to reveal whether the robot could nav-
igate in a socially acceptable way in a real-world en-

vironment, without disrupting the normal flow of the

Fig. 6 Map and image of the field trial site.

crowd by causing abrupt motions in the surrounding
pedestrians. For simplicity sake’s we name such situa-
tions as “unsafe”, even if this is not the usual mean-

ing assigned to this term in robot navigation [30]. We
video recorded the scene of the field trial, and we relied
on two coders to understand if the robot was causing

any “unsafe situation”. In detail, for each human robot
“encounter”, i.e. for each person who passed within 5
m from the robot, we determined whether the robot’s

behavior was safe for the pedestrian using the following
criterion:

– the robot behavior was judged unsafe if the pedes-
trians appeared to feel themselves to be in an unsafe
situation, e.g., about to collide with the robot, and

quickly changed their walking speed and/or moving
direction (e.g., jumped aside) to avoid the robot;

– otherwise, the robot’s behavior was coded as safe.

Fig. 8 shows an example of unsafe behavior.

4.2.2 Result

In the evaluation, we conducted a two-hour test for

each condition, each test consisting of 27 trials. Under
the TVDW condition, there were 168 encounters, i.e.
168 visitors walked within 5 m from the robot, while

under the proposed method condition, there were 160
such encounters. Two coders classified the interactions
between all 328 visitors and the robot as safe or un-

safe by observing the recorded videos. Cohen’s kappa
coefficient was 0.89, indicating that their observations
were highly consistent. Moreover, for consistent analy-

sis, they discussed and reached a consensus on all the
observed situations.

As a result, six behaviors over 168, i.e., 3.6% of the
encounters, were coded as unsafe under the TVDW con-

dition, but no unsafe behavior was found when using
the proposed method. A χ-square test revealed signifi-
cant differences in the ratio of the occurrence of unsafe

behaviors (χ2 (1) = 5.821, p=.030).
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The experiment results revealed that the robot us-

ing the proposed method is perceived as safer than
the alternative method, suggesting that when using the
pedestrian model the robot moves similar to humans

and gives the impression of performing socially accept-
able collision-avoiding. As a result the proposed method
does not disrupt the normal flow of the crowd by caus-

ing sudden motions in the surrounding pedestrians. This
consideration is supported by the observation of some
scenes in which pedestrians and the robot collabora-

tively avoided collisions (Fig. 7). In this scene, the robot
approaching two pedestrians starts to change its mov-
ing direction a few seconds before reaching the contact

distance; at the same time the robot does not deviate
very strongly from its trajectory, but does it in such a
way that the collision is smoothly avoided through the

collaboration of the two pedestrians, who deviate from
their trajectories in a similar way. Such a behavior (an-
ticipating the collision-avoiding behavior in order not
to surprise the opponent, and enhancing collaboration

from other pedestrians) is an example of socially ac-
ceptable avoidance behavior. This “social norm” was
not explicitly introduced in the pedestrian model, but

was implicitly coded in the parameter values through
the learning process based on human trajectories.

In contrast, the unsafe behaviors generated by the
TVDW method appear to reflect the lack of any at-

tempt to reproduce such a socially acceptable behav-
ior. This method plans a trajectory that is assured not
to collide with pedestrians by assuming them to be

moving obstacles with constant velocity, an assumption
that results to be strong enough to provide collision-
free navigation. As expected, this method never caused

collisions and was coded as “safe” (according to the
meaning given to this term in this section) in the large
majority of the encounters (96.4%) during the experi-

ment. However, despite being collision free, the robot
was sometimes perceived as unsafe by the pedestrians,
since it might not correspond to the expected “social

norm”. Fig. 8 shows a scene coded as unsafe. Here the
pedestrian started to slightly deviate from his course
before getting close to the robot (Fig. 8-left). The robot

waited to avoid the pedestrian until reaching a close
distance, where it stopped and started to turn right
(Fig. 8-middle). This behavior was felt as unsafe by the

pedestrian, who probably expected the robot to start
to deviate much earlier and more smoothly. The pedes-
trian eventually almost jumped aside to avoid the robot

(Fig. 8-right). The occurrence of such a possibly unsafe
situation suggests that the robot’s behavior was not so-
cially acceptable.

We further analyzed how the robot behaved in more

crowded situations. Fig. 9 shows a scene in which the

Fig. 7 Safe behavior under the proposed method.

Fig. 8 Unsafe behavior under the TVDW method.

proposed method successfully navigated the robot in a
many-people setting. The robot was initially heading
toward a group of people, which yielded a social force

strong enough to make the robot turn right to avoid all
of them. After avoiding the first group, the robot again
changed its moving direction to successfully avoid a sec-

ond group. This example illustrates that the proposed
method reproduces human-like collision avoidance even
in many-people settings.

In contrast, the TVDW method generated awkward
situations in multi-people settings. Fig. 10 shows a sit-
uation in which the robot controlled by the TVDW

method headed toward a group of pedestrians. It passed
through the group, since the pedestrians yielded before
the robot started to change its motion to avoid them.

The members of the group had to part to allow the
robot to pass, a situation that is seldom observed in
inter-pedestrian interaction. The collision-free compu-

tation of the TVDW method was performed correctly
in this situation, since at the moment the pedestrians
parted to avoid the robot, the latter had still plenty

of time to modify its trajectory to avoid the collision.
Nevertheless this collision-avoiding behavior occurred
too late to be perceived as acceptable by the pedestri-

ans.

The final publication is available at 
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Fig. 9 Video frames and illustration of a situation in which
the robot safely navigated through a crowd using the proposed

method.

Fig. 10 Video frames and illustration of a situation in which

some pedestrians had to part to avoid the robot using the TVDW
method.

5 Discussion

5.1 Alternative methods for safe navigation

In this research work, in order to attain a safe collision-

avoidance movement for the robot, we used a pedestrian

model as a compact method to reproduce human-like

and thus socially acceptable collision avoidance behav-
ior for a robot deployed in a pedestrian crowd. A simi-
lar result could probably be reproduced using different

methods as, for example, a motion planning method
with constraints about social distance or personal space.
We nevertheless stress that introducing the concept of

social space in a motion planner, even if done in accor-
dance with social studies, does not imply necessarily
realistic behavior in a multi-person setting. Concepts

as social distance are usually introduced for two people
situations and very often for static settings. Thus the
introduction of these concepts in a motion planner has

to be performed with a calibration on real pedestrian
trajectories, which may be a non-trivial process.

We believe that using a pedestrian model calibrated

on actual pedestrian behavior is a relatively easy way to
effectively reproduce human-like collision-avoidance in
the robot. Since the pedestrian model uses simple equa-

tions to calculate the social forces to represent human-
like collision-avoidance movements, it is not only sim-
ple to implement and efficient from a computational
point of view but also more stable to environmental

changes than traditional approaches that use relatively
complex equations. As written above, the pedestrian
model calculates the social force based on collision pre-

dictions with regards to people. Therefore, it is robust
to changes of the density in the environment, while a
traditional approach for safe navigation might need fine

tuning of many parameters to be used at different den-
sities. Some previous studies required explicit learning
about the environment to be able to predict people’s

future behavior, e.g., where people would go and how
they would walk [33–35]. Since our method only per-
forms a simple velocity-based prediction, it does not

require previous knowledge or learning of the environ-
ment properties. Based these considerations, we think
that using a pedestrian model as the one proposed in

this work is an appropriate way to attain human like
collision avoidance for a robot moving in pedestrian fa-
cilities.

5.2 Future work

This work deals with socially acceptable collision avoid-
ance with respect to pedestrians in a possibly dense

but open environment. In order to safely navigate the
robot in a pedestrian facility, all the aspects of naviga-
tion have to be developed, such as global path planning,

and collision avoidance with respect to non-human ob-
stacles of different size and velocity. Others issues could
be investigated and represent possible future research

topics:

The final publication is available at 
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1. Pedestrian social norms. In this paper we coped

with the development of a socially acceptable navi-
gation system for a mobile robot, but our approach
was based on the analysis of dynamical features of

pedestrian trajectories, under the assumption that
in a collision avoidance maneuver the behavior of
the involved pedestrians is completely symmetrical.

Nevertheless human behavior is more complex, due
to the presence of a few social norms. For exam-
ple pedestrians are known to have a culturally de-

pendent tendency to walk on the left or right side
of a corridor [36], which seems to be connected to
a bias in collision avoidance [37]; there are usually

some social priorities involved in deciding who has
to give the way [38]; furthermore social groups are
an important component of pedestrian crowds [39],

and the correct behavior with respect to this groups
has to be taken in consideration, and introduced in
the pedestrian model. Recently, Zanlungo et al. [40]
have reported that Japanese pedestrians have a ten-

dency to avoid on the left and overtake on the right,
with effects on the density and velocity distribu-
tions, and extended the CP model in such a way to

cope with this social norm. The same authors intro-
duced also a SFM based description of the behavior
of small social pedestrian groups [41].

2. HRI model. The pedestrian model used in this paper
only considers people’s goal-directed and collision-
avoiding behaviors, while ignoring other social ac-

tivities that humans may perform in pedestrian fa-
cilities. Thus, any pedestrian behavior that goes be-
yond the model would break the assumptions under

which our system works. A case of particular inter-
est for robot studies regards those pedestrians that
actively approach the robot to interact with it. Such

human-robot interaction behavior is not modeled in
this study. We consider that, for safe navigation, de-
veloping such a model is not mandatory, since peo-

ple who intentionally approach the robot are obvi-
ously aware of its presence, and thus we may expect
that they do not behave dangerously from a navi-

gation point of view. Nevertheless the development
of a model of these people’s behavior will be indis-
pensable when actually deploying a robot to provide

services in a pedestrian environment.
3. Evaluation. The current paper bases its evaluation

criteria entirely on subjective metrics (questionnaires,

coders). Other works ([42,43]) use more quantita-
tive criteria to evaluate the easiness of walking of
pedestrians, criteria that could be introduced in the

evaluation of a “socially acceptable” pedestrian sys-
tem as the one proposed in this work.

5.3 Limitations

Finally, we may discuss some limitations of our ap-

proach, whose solution may also be the subject of future
research work

1. The learning set. Even if we assume that Eq. (3)
correctly describes human-like behavior, we need a

good learning set of pedestrian trajectories around
the robot in order to use the method of [13], or an
equivalent learning algorithm, to extract the cor-

rect interaction force function (i.e., parameters Ar,
Br). The trajectories of our controlled experiments
in section 3.3 are far from fulfilling the definition

of a large enough learning set (the robot was inter-
acting with a single pedestrian, the pedestrian was
always coming from an head-on direction, and the

robot was moving straight, i.e. it was not interact-
ing). Designing multi-person setting experiments as
those used for inter-pedestrian model calibration in

[13] is not trivial, due to the robot motion limitation
with respect to the pedestrians, and to the problem
of defining the robot’s avoidance behavior during

the experiments (since in principle such a behav-
ior has to be determined by the same experiments).
One solution could be to deploy the robot using the

collision avoidance parameters obtained in this work
in a shopping mall, and use the trajectories of the
pedestrians around the robot as a learning set, even

if this approach implies the use of a very high qual-
ity tracker in a real world setting.

2. Calibration to different robots. The parameters for

the robot collision avoiding system that we obtained
in this work were determined through experiments
involving a particular robot model interacting with

Japanese people. Since evidence suggests that peo-
ple maintain different distances depending on the
robot’s appearance [44] and cultural factors [36], the

method might need to be re-calibrated before being
applied to different robots and cultures. For exam-
ple, in our experiments of section 3.3, pedestrians

avoided the robot in a way similar to the one with
which they avoid other pedestrians; such a behavior
is surely influenced by the fact that our robot’s size

is similar to the human size, and probably also by
the robot’s reduced velocity.

3. Environmental sensors. For this work we relied on

environmental sensors for tracking the pedestrians
around the robot. We believe that our system can
be used also with only on-board sensors, but it has

to be expected that the capability of tracking sur-
rounding pedestrians would be reduced. It is not
easy, using just theoretical arguments, to predict the

range of usage, in terms of pedestrian densities, of

The final publication is available at 
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the on-board system, and how it compares to the en-

vironmental sensors one, but it has to be expected
that the former one will be more limited. Such a
question has to be assessed in order to develop a

completely autonomous navigation system.

6 Conclusion

This paper reports a system for safe and comfortable
collision avoidance toward people by a mobile robot us-

ing a pedestrian model. We used a particular specifi-
cation of the Social Force model, CP-SFM, which has
been explicitly developed for such low-density settings

as those normally found in a shopping mall corridor,
to reproduce human-like collision-avoidance behavior in
robots. We first tested the developed robot in a single-

person setting to confirm that it provides a comfort-
able feeling to pedestrians. The results suggest that a
robot using the proposed method is significantly more

socially acceptable than one using an alternative tradi-
tional method. Second, we conducted a field experiment
in a shopping mall corridor to investigate whether the

robot could navigate safely among pedestrians. The re-
sults revealed that our method enables safer navigation
without causing any possibly unsafe abrupt movements

in the surrounding pedestrians during a two-hour trial.

A Background work: Collision Prediction

Social Force Model

A.1 Model definition

Models of pedestrian collision-avoidance have been developed since
the 50s to deepen understanding of crowd dynamics and design
better facilities. The Social Force Model (SFM) [45] is a popular

pedestrian model that describes the behavior of pedestrians in a
crowd through reaction forces inspired by physics. More than a
single model, SFM may be considered as a framework in which
the acceleration of a pedestrian i is given by

dvi(t)

dt
=

v0
i − vi(t)

τ
+
∑
j ̸=i

fi,j(t). (1)

Here vi(t) is the pedestrian velocity at time t, v0
i is the pedes-

trian’s preferred velocity, a vector directed towards the current

pedestrian sub-goal and whose magnitude corresponds to the ve-
locity the pedestrian is more comfortable walking at, while τ is
the relaxation time to recover the preferred velocity (0.66 s−1

in [13]). The actual avoidance behavior is determined by the in-

teraction term with the other pedestrians j in the environment,
fi,j , whose precise form determines the SFM specification. The
original Circular Specification (CS) of the model was determined

by symmetrical repulsive forces as

fi,j(t) = Ae−di,j(t)/B
di,j(t)

di,j(t)
, (2)

where di,j is the distance between the pedestrians, A is the max-

imum interaction intensity and B determines how the intensity

Fig. 11 Collision prediction among pedestrians with CP-SFM.
d′ij is the distance between pedestrians at the time of maximum
approach ti.

changes with d. The model is popular for its simplicity, and it
works well at the high densities that describe the egress condi-
tions it has been developed for [46], but it fails in describing lower

density regimes and for this reason a few improved specifications,
taking in account relative velocities in the computation of fi,j ,
have been proposed [47].
Zanlungo et al. [13] compare a few of these specifications to the

Collision Prediction (CP) specification that they propose. This
model, that develops on ideas originating from Reynold’s boid
model [48], uses the relative velocity between the pedestrians to
compute how their “future” distance d′

i,j will vary with time

according to the hypothesis that the pedestrians will keep a con-
stant velocity. The time at which the projected distance d′i,j as-
sumes a minimum value is called the “interaction time” ti for
pedestrian i and the value of the corresponding future distance

d′
i,j(ti) (see figure 11) replaces the current distance in the equa-

tion for the CS specification force (2) in order to obtain the CP
specification equation

fi,j(di,j ,vi,j ,vi) = A
vi

ti
e−d′i,j/B

d′
i,j(ti)

d′i,j(ti)
. (3)

Here the term vi/ti is introduced to modulate the force in such
a way that the pedestrian is able to stop in time ti. According to
the analysis of [13], the CP-SFM model outperforms the previous
SFM specifications in simulating pedestrian collision avoidance in

low and average density multi-person settings, a characteristics
that makes this model suitable to robot applications.
[49] compares the performance of CP to other popular pedestrian
methods for egress oriented applications.

A.2 Model calibration

To calibrate and evaluate the CP-SFM model, [13] uses a set
of pedestrian trajectories obtained in a controlled experiment to
which 8 subjects took part. Each subject was given a start and
goal point, and was prescribed to walk as naturally as possible

towards the goal. The trajectories of pedestrians were tracked in
a square area with an 8 meters side. The start and goal points
were decided in such a way that the trajectories of all pedestri-
ans will converge, if walking straight to the goal, at the center

of the experimental area, creating a potentially complex colli-
sion avoiding problem; but the density of the environment was
low enough to allow the pedestrians to freely choose their avoid-
ance strategy. The calibration process used a genetic algorithm to

minimize a fitness function that consisted in the average distance
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between the simulated and actual trajectories of pedestrians plus
a penalty term assigned to those trajectories that “collided” be-

tween them (more exactly, trajectories that reached a minimum
distance smaller than the distance between any pair of actual
pedestrians during the experiment). The genetic algorithm used

500 genomes per generation, over 1000 different generations; tour-
nament selection over a pool of 5 solutions, crossover and random
Gaussian mutation with probability 0.1. The solution was deter-
mined through 50 independent runs of the algorithm. The CP-

SFM method outperformed all the other specifications with an
average position error of 30±1 centimeters (55±1 for CS-SFM).
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