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Abstract—Small robots are being designed to recognize 

behaviors through playful interaction. Prior work used data from 
impoverished sensing devices such as inertial sensors to analyze 
gestures and attitude in playful interaction through time series 
analysis. However, the prior work did not focus on individual 
differences required for person identification. This research 
hypothesizes that person identification can be achieved by 
determining individual differences in playful interaction by using 
inertial sensor data. We propose a method that iteratively 
narrows down the candidates during interaction to achieve 
accurate person identification. This method calculates the 
features using a time series of the inertial sensor data. These 
features identify a candidate who is playfully interacting with the 
robot using a decision tree classifier that includes combinations of 
the current candidates. The system stores the results as a dataset 
for voting, and the voting results are used to reduce the candidates 
until the number of candidates is winnowed to one. Evaluation 
results show that our proposed method identifies persons through 
playful interactions with 99.1% accuracy. 
 

Index Terms—Identification of persons, Human-robot 
interaction, Humanoid robot  

I. INTRODUCTION 

A. Inertial sensing through playful interaction 
LAYFUL interaction, which consists of sequences of 

intimate interaction patterns, is an essential mode of 
communication between people and small robots, such as 
pet-type and hobby robots. Researchers have found that playful 
interactions with robots are useful for therapy and enjoyment [1, 
2]. Thanks to their small size, people can interact playfully with 
small robots as they would with a child or pet: picking them up, 
walking with them, and hugging them (Fig. 1). 

However, this playful interaction complicates sensing. Due 
to social and cultural constructs, people identify themselves 
before engaging in other types of interaction, but such “polite” 
introductory behaviors cannot be expected with robots. 
Furthermore, since a robot is in very close proximity when held, 
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it is difficult to use typical face recognition methods such as a 
camera on the robot (Fig. 1). Small robot technology would 
benefit from alternative identification methods that employ 
inexpensive sensors during close interactions.  

In fact, the ability to sense the properties of the interacting 
person in playful interaction has become increasingly important 
in human-robot interaction. Researchers, by analyzing playful 
interaction, have developed such sensing mechanisms to 
recognize human gestures [3, 4], full-body gestures [5], and 
attitudes toward a robot [6]. Previous research simplified the 
processes of sensing and characterizing partners from playful 
interactions by using only time series data from inertial sensors. 

 
Fig. 1 Playful interaction with a small robot that cannot identify the 

interacting person, even when it can identify the interacting behavior 
 

B. Person identification through playful interaction 
Person identification through playful interaction with simple 

and inexpensive sensors (i.e., inertial sensors) offers great 
promise for small robots. For example, a person-identification 
capability would enable developers to design long-term 
interactions between robots and users and to personalize 
behaviors for users [7-9].  

We hypothesize that person identification can be achieved by 
determining individual differences in playful interaction using 
inertial sensor data [2, 5]. For example, repeated playful 
behavior such as bouncing a baby greatly differs between 
parents. Past research that enabled small robots to identify 
interaction behaviors did not focus on person identification 
(details in Section II-A).  
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C. Research aims 
Here, we propose a method that uses inertial sensors to 

identify a person interacting with a small robot through playful 
interaction. We focus on inertial sensor data during each 
interaction pattern because observing sequences would increase 
the time needed for person identification. Our method applies 
two unique approaches: 1) We focused on the differences in 
extracted features from the inertial sensor data during playful 
interactions between individuals; 2) We iteratively extracted 
features from sensor output and narrowed down the candidates 
during interactions to identify the interacting person.  

 The rest of our paper is structured as follows. Section II 
describes related work, and Section III introduces our proposed 
method using inertial sensors to identify persons interacting 
through playful interaction. Section IV presents the 
experimental methods. Section V presents the results. Section 
VI provides a discussion, and Section VII summarizes the 
contributions. 

II. RELATED WORK 

A. Recognition through interaction with small robots 
Some research has included field trials in real environments 

with small animal robots [10] and small humanoid robots [11, 
12] that playfully interact with people. These studies 
investigated how interactions with small robots affected 
children or the elderly, but they did not focus on person 
identification during such playful interaction. 

Inertial sensors have been used for gesture and activity 
recognition in playful interactions with small robots. Using an 
accelerometer and tilt sensors, Salter et al. recognized four 
kinds of interaction between people and a ball-like robot: being 
alone, interaction, carrying, and spinning [3, 4]. MIT’s Personal 
Robots group used a small teddy bear robot to recognize three 
gestures using inertial sensors: picking up, bouncing, and 
rocking [13, 14]. François et al.’s model classified interaction 
into two categories: gentle and strong [15]. Cooney et al.’s 
model recognized full-body gestures in playful interactions 
using inertial sensors and then designed enjoyable playful 
interaction with the model [2, 5]. This body of work clarified 
essential recognition functions for small robots through playful 
interactions, but it did not focus on person identification. 

Information through physical interaction with environments 
might help in the identification process. For example, Giguere 
et al. developed a simple tactile probe used for accurate surface 
identification by Rumba, their mobile robot [16]. Miyashita et 
al. enabled small humanoid robots to efficiently recognize the 
environment by selecting their sensing behavior [17]. However, 
this prior work only focused on static targets and could not 
directly support person identification through playful 
interaction. 

B. Person identification using inertial sensory information 
and other kinds of sensors 
Researchers have developed person-identification systems by 

integrating inertial and other kinds of sensors. For example, 
Ikeda et al. developed a pedestrian-identification system by 

focusing on the correlation of rhythms calculated by wearable 
inertial sensors and a human tracking system [18]. Woodman et 
al. proposed a method to identify pedestrians using a Wi-Fi 
positioning method with inertial sensors [19].  

As these efforts assumed the use of additional wearable 
sensors, they could not achieve person identification with 
inertial sensors alone; rather, they relied on a rich sensing 
environment such as a human tracking system or a Wi-Fi 
positioning system and information on the relative trajectory 
differences from other pedestrians. In contrast, we have 
realized person identification using only the robot’s inertial 
sensors through playful interactions between people and small 
robots.  

III. IDENTIFICATION OF INTERACTING PERSON 

A. Architecture 
We proposed a method to identify a person who is engaged 

in playful interaction with a robot by phasing the reductions of 
candidates, i.e., a process of iteratively eliminating individuals 
from the pool of candidates. Fig. 2 shows an overview of our 
implemented system with inertial sensory information. We 
calculated the person identification features by a time series of 
the inertial sensor data (Section III-B). These features identify a 
candidate who is playfully interacting with the robot using a 
decision tree classifier that includes combinations of the current 
candidates (Section III-C). The system stores the results as a 
dataset for voting until the amount of data and the elapsed time 
from the last voting exceed thresholds for the next voting 
(Section III-D). The voting results are used to reduce the set of 
candidates (Section III-E). The system finally identifies the 
person who is playfully interacting with the robot by repeating 
these processes until the number of candidates is winnowed to 
one.  

Note that our proposed method assumes that only one person 
is playfully interacting with the robot, data from the playful 
interaction are gathered beforehand, and the playful 
interactions continue for a certain period of time.  

B. Feature extraction 
Many kinds of features have been suggested by past research 

that used inertial sensors for various identifications [3–6, 16]. 
In this research, however, instead of using many features we 
employed a limited set of features to decrease the calculation 
costs, i.e., mean and standard deviation: 
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where s(t) is the inertial sensor data at time t and n is the amount 
of data in the time period.  

We also focused on the characteristics of playful interaction 
because they will probably be repeated and will enhance the 
identification of personal characteristics. In fact, past research 
reported that participants repeatedly interacted playfully with 
robots [2, 5]. Therefore, we also employed a zero-cross number, 
which is defined as the number of times the signal crosses the 
average value in time period n (Fig. 3). We used three kinds of 
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features in each time step f(T, µ, s, z) from each sensor to 
identify the person in playful interaction. Then these features 
were calculated by shifting one time step that equals the 
frequency of the sensor data (Fig. 4). 

 
Fig. 2 Overview of proposed method 

 

 
Fig. 3 Zero-cross number (a case of three zero-cross points) 

 

 
Fig. 4 Calculation of features using time-shift method 

  

C. Candidate identification  
In our proposed method, we applied a C4.5 decision tree 

classifier [20], which is widely used in robotics, to identify the 
correct candidate interacting with the robot at each time step. 
We prepared multiple decision trees that considered all 
combinations among candidates in advance of the phased 
reductions of the candidates during the voting process. Each 
decision tree includes at least two classes, and thus the number 
of decision trees is calculated by this function: 
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where Nc is the number of classes, i.e., the number of all 
candidates. In our proposed method, the system stores the 
results from a decision tree using f(T, µ, s, z) for the voting 
process (details in next section). The candidate at each time step 
is calculated as 

)),,,(,( )(  zTfandidatesRemainingCdecisiontCandidate sm=  (4), 
where decision is a function to output a candidate using a 
decision tree classifier that includes the RemainingCandidates. 

In the first process, RemainingCandidates includes all 
candidates: RemainingCandidates = {A, B … Nc}.  

D. Voting process 
Our proposed method’s voting process determines the 

phased reductions of candidates using a set of candidate data 
within a certain time period (Fig. 5) instead of each candidate’s 
result, since the system cannot know which timing is better to 
identify people during playful interactions. Since playful 
interactions are periodic [2,5], sometimes such interaction 
between individuals is quite similar or different within a single 
time period used for feature extraction. To avoid the difficulties 
of determining such timing, we used a voting process with a set 
of candidates from a certain time period; the effectiveness of 
this approach is investigated in the evaluation section. 

The voting process is conducted every time period Tv by 
shifting a regular interval (Tv/2 sec) to avoid similar results 
between voting processes. In this process, the system calculates 
the selected ratio of each candidate in time period Tv: 
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E. Reduction of candidates 
Next, the system narrows down the interacting person 

candidates based on their selection ratios. If a candidate’s ratio 
is lower than a threshold, the candidate is removed in the next 
voting process. The threshold value is defined as 

)/(1 α∗= dαtesNumOfCαndiTh  (6), 
where NumOfCandidate is the current number of candidates 
and α  is a coefficient for the threshold calculation. The rest of 
the candidates are defined as 
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where CurrentCandidate is the set of current candidates. 
If RemainingCandidate includes more than two candidates, 

the system repeats the above processes until it has only one 
candidate. 

IV. EXPERIMENT METHODS 
To investigate our proposed method’s performance, we 

collected data where participants playfully interacted with a 
small robot equipped with inertial sensors.  

A. Robot hardware 
For the data collection, we used VisiON-4G, a small, 

human-like robot (Fig. 6) [21] that has a head (1 DOF), two 
arms (3 DOFs for each), a body, a waist, and two legs (7 DOFs 
for each). To record the inertial sensor data during the 
interactions, we attached two kinds of sensors to the robot’s 
body: a 3-axis acceleration sensor (MMA7260Q, Freescale) 
and three 1-axis gyro sensors (ENC-03R, Murata 
Manufacturing) (Fig. 6). The characteristics of each sensor are 
shown in Tables 1 and 2. The sampling rate of each sensor was 
20 Hz. Accordingly, the robot can record six axes of inertial 
information. We adopted a moving average method to reduce 
the noise of the sensor data. 
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Fig. 5 Outline of voting process 

 

 
Fig. 6 Vision-4 G 

 
Table 1 Specifications of 3-axis acceleration sensor  

Model MMA7260Q (Freescale) 
Number of axes 3 

Range ±6 g 
Sensitivity 200 mV/g 

Nonlinearity ±0.03% 
Size 6.00 × 6.00 × 1.45 mm 

 
Table 2 Specifications of 1-axis gyro sensor 

Model ENC-3R (Murata 
Manufacturing) 

Number of axes 1 
Range ±300 deg./sec. 

Sensitivity 0.67 mV/deg./sec. 
Nonlinearity ±5% 

Size 4.0 × 8.0 × 2.0 mm 

 
 
 

 
  

 
 

(a) (b) (c) (d) (e) 
Fig. 7 Playful interaction patterns 

 

  

Fig. 8 Experiment environment 

B. Participants 
The participants were fifteen university students (eight men 

and seven women, average age: 20.8, S.D.: 1.7) recruited from 
the Internet without regard to major or specialty; their 
backgrounds were varied and most were not familiar with 
robots. They did not interact with our robot beforehand. They 
were paid 1,000 yen (roughly $12 U.S.) for one hour of 
participation.  

C. Tasks 
In the period of data collection, each participant playfully 

interacted with the robot based on the experimenter’s 
instructions. In preparing to teach playful interactions, we 
referred to previous research that conducted playful 
interactions with small robots for data collection and chose five 
behaviors (Fig. 7): (a) horizontally hugging the robot like a 
child, (b) horizontally hugging it while walking, (c) bouncing it 
up and down as if amusing a child, (d) vertically hugging it, and 
(e) vertically hugging it while walking.  

D. Procedure 
We conducted our experiment in a laboratory (Fig. 8). First, 

the robot was placed on the right side of a desk (A). A monitor 
was placed in the back of the room. Before the first session, the 
participants were given a brief description of the experiment’s 
purpose and procedure. Each participant conducted every 
interaction nine times. The interactions were displayed on a 
monitor. The order of the instructed interactions was 
counterbalanced, and each participant interacted with the robot 
45 times (Fig. 9). The experimenter asked the participants to 
walk around the center of the room or between the desks during 
the walking behaviors.  

Each interaction was conducted within 51.2 seconds due to 
the limitations of the recording system. Thus, the image 
displayed on the monitor changed with a beep every 51.2 
seconds. The first 6.4 seconds of data were not used to avoid the 
effects of interaction transitions.  

 
Fig. 9 Data collection as a participant hugged the robot and walked  

E. Hypothesis and prediction 
For person identification using small robots equipped with 

inertial sensors, we focused on personal characteristics in the 
interaction patterns of playful interactions. Since such personal 
characteristics are different among individuals, we assume that 
a robot can identify the interacting person if it can distinguish 
such differences through interaction. Personal characteristics 
such as habits and rhythm probably appear through repetition of 
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an interaction pattern in playful interaction during a certain 
time period. Therefore, it is difficult to use a single moment of 
sensor data, or a summary of all sensor data during interactions, 
to identify differences between personal characteristics from 
the viewpoint of sensor output. 

Consequently, we applied voting to reduce the candidates 
rather than allowing an increase in the needed data length, 
which is the number of data points from the time series that are 
processed by an algorithm before the algorithm terminates with 
a classification. Our approach is useful for observing the 
amount of difference between personal characteristics. We also 
assume that such a step-by-step sensing process will be more 
effective than a process that summarizes all of the sensor data, 
because summarizing complicates the task of finding 
differences in personal characteristics and needs much 
calculation time. 

Our hypothesis states that if we successfully implement our 
ideas, our proposed method will accurately identify the 
interacting person through playful interaction. We predict the 
following: 

 
Prediction 1: Our proposed method, which considers 

personal characteristics based on inertial sensor data and voting 
processes, will achieve a higher identification ratio than an 
alternative method that summarizes all sensor data during 
interactions for person identification. Moreover, our proposed 
method will decrease the needed data length from the level of 
the alternative method. 

Prediction 2: The proposed method with voting processes 
will achieve a higher identification ratio than the proposed 
method without voting processes. On the other hand, using the 
voting processes will increase the needed data length. 

 

F. Dependent measures 
We measured the identification ratio, which is considered the 

success rate of the system correctly identifying the interacting 
person. We also measured the needed data length, which is the 
length of the data used for person identification. 

G. Experimental Design and Data Analysis 
15 participants each interacted 45 times with the robot. We 

conducted a leave-one-out cross-validation to measure the 
performance of the person identification. We used 674 datasets 
to construct decision tree classifiers and one dataset to test the 
identification in each validation. The system used 674 datasets 
to generate 32,752 trees (sum of 15Ci (i=2~14)). Note that these 
processes can be done before the experiment but not in real 
time.  

We set each parameter to construct the decision tree 
classifiers: n = 64 steps (3.2 sec), and Tv = 128-step (6.4 sec) 
intervals of voting time, i.e., Tv /2 = 64 steps (3.2 sec). We 
determined the coefficient of α in Eq. (6) to be four. These 
parameters are based on heuristic tuning with the test data. 

In this experiment, we prepared two alternative methods to 
investigate the effectiveness of our proposed method: proposed 
method without voting process and simple identification 

method. The former investigates the effectiveness of the voting 
process in our proposed method; the latter investigates whether 
our approach is effective by focusing on the personal 
characteristics in the time series data of the inertial sensors. 

The proposed method without voting process reduces the 
candidates using the candidate results at each time step instead 
of the voting process; the right part of Fig. 2 is not used for 
person identification. For this purpose, this method uses the 
reliability from a confusion matrix of a decision tree classifier. 
For example, for the confusion matrix of the decision tree 
classifier shown in Table 3, the reliability is 80% when the 
decision tree classifier’s results are “A” and 60% when its 
results are “B.” Accordingly, the following equation is used 
instead of (5). We used the same threshold value of the 
proposed method, i.e., (6), and the coefficient of α is four. 

 
Table 3 Example of a confusion matrix 

a b  
80 20 a = Class A 
40 60 b = Class B 

 

))( ,( 
)(

tcandidateandidateRemainingcatrixConfusionM
tRatio =  (8). 

 
The simple identification method did not use the voting 

process or the phased reductions of the candidates. It simply 
stored all of the sensor data, calculated the features from them 
(i.e., n = 896 steps = 44.8 sec), and used a decision tree 
classifier only once to calculate the candidates. Thus, the 
number of decision tree classifiers is one in this method, which 
includes all candidates. 

The final publication is available at IEEE via 
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6710110



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

6 

 
Fig. 10 Vertically hugging robot while walking: Participant A 

 
Fig. 11 Vertically hugging robot while walking: Participant B 

 

        
     Fig. 12 Sensor data of Z axis of acc. sensor from Participant A                             Fig. 13 Sensor data of Z axis of acc. sensor from Participant B 
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V. RESULTS 

A. Evaluation of person identification 
1) Verification of predictions  

Table 4 shows the results of the person identification and the 
calculation time for each method. Fig. 14 shows a confusion 
matrix with the proposed method, which achieved 99.1% for 
person identification through playful interactions; the 
alternative methods only achieved 92.4% and 72.4% accuracy.  

Cochran’s Q test revealed significant differences in the 
identification rate between conditions (Q = 243.750, p<.001). 
Multiple comparisons also revealed significant differences: 
proposed > proposed method without voting process (p=.001), 
proposed > simple identification (p<.001), and proposed 
method without voting process > simple identification (p<.001).  

We also conducted a repeated measures ANOVA and found a 
significant main effect (p<0.001, partial η2 = 1.00). A multiple 
comparison by the Bonferroni method revealed that the needed 
data length of the proposed condition was significantly less 
than for simple identification (p. <001) and significantly more 
than for proposed method without voting process (p<.001). We 
used this analysis method because the datasets were the same 
between conditions, which were prepared by the leave-one-out 
cross validation method.  

Our results show the effectiveness of the voting process using 
phased reductions of candidates for person identification. 
Moreover, the needed data length of the proposed method with 
the voting process was lower than that of the alternative method 
but still higher than that of the proposed method without the 
voting process. Therefore, our predictions were supported. 
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Table 4 Evaluation results 

Type of method 
Identification rate Needed 

data length 
(seconds) 

Average 
(%) S.D. 

Proposed  99.1 1.6 16.1 
Proposed method without  
voting process 92.4 6.1 9.7 

Simple identification  72.4 7.5 44.8 

 
  A B C D E F G H I J K L M M O 

A 43 0 0 0 0 2 0 0 0 0 0 0 0 0 0 

B 0 44 0 0 0 0 0 0 0 0 0 1 0 0 0 

C 2 0 43 0 0 0 0 0 0 0 0 0 0 0 0 

D 0 0 0 44 0 1 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 45 0 0 0 0 0 0 0 0 0 0 

F 0 0 0 0 0 45 0 0 0 0 0 0 0 0 0 

G 0 0 0 0 0 0 45 0 0 0 0 0 0 0 0 

H 0 0 0 0 0 0 0 45 0 0 0 0 0 0 0 

I 0 0 0 0 0 0 0 0 45 0 0 0 0 0 0 

J 0 0 0 0 0 0 0 0 0 45 0 0 0 0 0 

K 0 0 0 0 0 0 0 0 0 0 45 0 0 0 0 

L 0 0 0 0 0 0 0 0 0 0 0 45 0 0 0 

M 0 0 0 0 0 0 0 0 0 0 0 0 45 0 0 

N 0 0 0 0 0 0 0 0 0 0 0 0 0 45 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 45 

Fig. 14 Confusion matrix with proposed method 
 

2)  Interaction differences among participants 
Our hypothesis has already been supported by comparing the 

identification rates, but showing the differences in interaction 
styles is also important to verify its validity. Therefore, we 
present sensor data and images that show how playful 
interactions with the robot differed among the participants. 

Figs. 10 and 11 show playful interaction scenes between the 
robot and two participants. Participant A held the robot in both 
her arms and frequently bent over while walking. Therefore, the 
robot was held firmly to her body by the pressure from her arms, 
but its body swings with her. Participant B put her left hand 
under the robot’s foot and her right hand on its back (Fig. 11). 
The robot’s body moved up and down with her walking 
behavior. She also frequently patted its back while walking. 

These observations suggest that such personal characteristics 
as mannerisms appear through playful interactions. In fact, 
these different interaction styles exhibit different trends of 
sensor data (Figs. 12 and 13); we see that these trends are quite 
different in this dimension. Such differences are essential for 
identifying interacting people with inertia sensors. We believe 
that these findings support our hypothesis and the validity of 
our approach. 

 
3) Analysis of individual differences among participants 

We analyze how well our proposed method identifies 
participants through the phased reductions of candidates. If the 
method works properly, the sensor data from the inertial 
sensors can categorize each participant through the voting 
processes. For this analysis, we tried to visualize the sensor 
features that are calculated by different sensors and that have 
different units. Due to the difficulty of comparing such bits of 
data, we used features that have the highest information gain 

ratios in the calculations depending on the analysis setting (i.e., 
combinations of candidates). We adopted the 
multi-dimensional scaling (MDS) method with the classical 
multi-dimensional scaling of a data matrix, known as the 
principal coordinates analysis method [22], to visualize the 
relationships among each participant’s playful interactions.  

Fig. 15 shows the relative relationships among all nine 
interactions of “horizontally hugging robot while walking” 
calculated by MDS. It used the mean values from the 
acceleration sensor on the x, y, and z axes that are most often 
used in decision tree classifiers. Part of the relative distance 
among participant is large enough, e.g., participants D, F, and I. 
Some participant results showed large variance in their own 
interactions, e.g., participant B, but they still have enough 
distance from the others. On the other hand, this result indicates 
the difficulties of identifying an interacting participant with a 
single classification process because the relative distances 
among some participants are similar: participants E, H, and K. 

Fig. 16 also shows the relative relationships after the phased 
reductions from Fig. 14; it only includes the nine interactions of 
participants E, H, and K. Due to the differences among the 
features of a decision tree classifier that includes all candidates 
and one that includes only three participants , we used the SDs 
of the z axis on the acceleration and gyro sensors and the 
zero-cross number of the y axis on the gyro sensor.  

The relative distances among participant K and the others are 
larger than those values for the other participants. Note that the 
next voting process could identify the interaction participant 
using a decision tree that includes participants E and H. We 
believe that this observation supports the ability of our 
proposed method with a voting process to effectively phase the 
reductions of candidates by focusing on personal characteristics 
at the level of sensor data, even if parts of the playful 
interaction style are similar among candidates. 

 

B. Evaluation of behavior recognition 
We discuss the behavior recognition performance of our 

proposed method through playful interaction, in relation to that 
achieved by past research [2]. If our proposed method can be 
applied to such recognition in the same manner and show high 
performance, it will also be useful for the development of small 
robots. 

For person identification, we again conducted leave-one-out 
cross-validation to measure the behavior recognition 
performance. In all, 674 datasets were used to construct 
decision tree classifiers, and one dataset was used to test the 
identification in each validation with the same parameters. In 
this evaluation, first, the system identifies the participant and 
then uses the same test data to identify the category of playful 
interaction. We defined a case as successful when both the 
participant and the category are correctly identified; if either the 
participant or the category is incorrect, it is defined as a failure. 
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Table 5 shows the person identification results for each 

method. Our proposed method achieved 80.6% accuracy for 
person and behavior identification through playful interactions. 
The alternative methods only achieved 65.9% and 50.1% 
accuracy. 

 

Cochran’s Q test revealed significant differences in the 
identification rate among conditions (Q = 162.880, p<.001). 
Multiple comparisons also revealed significant differences: 
proposed > proposed method without voting process (p<.001), 
proposed > simple identification (p<.001), and proposed 
method without voting process > simple identification (p<.001). 
Our results again show the effectiveness of the voting process 
for the phased reductions of candidates for behavior 
recognition, as with the person identification results. 

 

 

VI. DISCUSSION 

A. Scalability 
1) Number of candidates 

We evaluated the proposed method with data from 15 
participants using 18 sensor features. If we increase the number 
of targets, our proposed method should identify them, although 
it might require more interaction time. As shown in Figs. 15 
and 16, the method identified the interacting participants 
through contentious voting processes, even when the first 
voting process failed to clearly separate multiple participants. 
With more targets, similar interaction patterns will also 
increase, so that more interaction time is needed for 
identification. 

In fact, the calculation time of the proposed method becomes 
longer due to the voting process shown in Tables 4 and 5. From 
the viewpoint of playful interaction, we do not expect these 
extended times to be a problem, since we can reduce the 
calculation time by adjusting the voting threshold; however, 
this solution involves a performance trade-off. Accurate 
identification is more important than relatively faster 
calculation time because it involves such essential information 
as personal features. 

 
2) Time universality 

We used the time series of the sensor data for person 
identification. If the difference in interaction patterns were 
substantially different due to time changes (e.g., morning and 
evening), using our proposed method as a person identification 
method would be difficult. We address this problem by 
analyzing the first and last bits of interaction data from the data 
collection. Since this time period includes at least 55 minutes, a 
rest time, and other kinds of interactions, it may be adequate for 
discussing individual changes caused by the progression of 
time. 

 
 
 

 
Fig. 15 MDS features of all participants’ features 

 

 
Fig. 16 MDS features of E, H, and K’s features after a voting process 

 
 

Table 5 Evaluation results of behavior recognition 

Method 
Identification rate Needed 

data length  
(seconds) 

Average 
(%) S.D. 

Proposed  80.6 8.9 17.0  
Proposed method without 
voting process 65.9 8.9 9.7 

Simple identification  50.1 6.5 44.8 
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Fig. 17 shows the relationship between each first and last 

interaction of “horizontally hugging robot while walking” 
calculated by MDS. The features are the mean values on the x, 
y, and z axes of the acceleration sensor. This figure shows a 
similar trend to Fig. 15; part of the dataset can be separated to 
different clusters, but separating the other data is difficult. Fig. 
18 also shows the relative relationships after phasing the 
reductions from Fig. 17. Therefore, this figure only includes the 

first and last interactions of persons G, L, M, N, and O. For this 
calculation, since we used the x, y and z axes of the standard 
deviation of the acceleration sensor, this figure also shows a 
similar trend to that of Fig. 16, indicating that the differences 
between the first and last interactions of the same person are 
slightly smaller than those of other people’s interaction patterns. 
Consequently, we do not believe the time intervals significantly 
affect people’s interaction patterns. 

 
3) Robot appearance 

The interaction style humans assume with a robot may be 
influenced by its appearance. In this experiment, the robot had a 
human-like appearance and was about the same size as a baby. 
Therefore, playful interaction with it can be designed in a 
similar way as interaction with a baby. If the robot’s appearance 
were different from a human-like appearance (e.g., a ball, a 
creature, or a toy), the playful interaction style may be different 
than with human-like robots  

Such differences based on robot appearance are one 
limitation of this work. In this experiment, we only confirmed 
the effectiveness of our proposed method with a human-like 
robot. However, even when the robot’s appearance is different 
from that of a human-like robot, playful interaction with a robot 
may be different among individuals because it is influenced not 
only by personality but also by such physical properties as 
strength. Therefore, we believe that our proposed method can 
be adopted for robots with non-humanlike appearances. 

 

B. Parameter tuning 
We set the parameters for feature extraction based on 

heuristic tuning. This is another limitation of this research. In 
this paper, we heuristically found the parameters that provide 
adequate performance for person identification. However, 
parameters would need to be re-tuned for different settings, 
such as the number of interacting people, different personal 
characteristics like the differences between adults and children, 
and the shape/weight of the robot. In fact, if the robot is too 
heavy, interaction styles may be different due to personal 
strength. If the robot's appearance is not human-like, 
participants may also choose different interaction styles.  

To automate parameter tuning, such basic ways as a grid 
search and a generic algorithm can be applied. These methods 
can also use parameter tuning for generating decision trees. 
Automation of parameter tuning remains as future work. 

 

C. Applications and future work for long-term interaction 
We investigated whether about one hour (55 minutes) of 

repetition would be a problem for person identification. 
However, it is important to consider how the system updates 
stored data for person identification for such long-term 
situations as over one month. Moreover, the transition of 
interacting persons would be a problem for person 
identification. In the real world, we need to consider such 
transitions. 

To solve these types of problems, we might need at least 

 
Fig. 17   MDS features on 1st & 9th trials of all participants  

 

 
Fig. 18 MDS features on 1st & 9th trials of G, L, M, N, and O 
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three kinds of implementations. The first is storing interaction 
data and continuously updating decision trees in a background 
process to deal with the changes in interaction style due to 
long-term interaction. The second is dealing with people 
transitions. For this purpose, the system needs to continuously 
calculate the reliability of the current interacting person even if 
the identification is finished. This function is also needed to 
update decision trees for long-term interaction. The final one is 
integration with other identification methods, such as face 
recognition with environmental cameras. Our proposed method 
achieved high performance with only inertia sensors, which can 
cover situations where a robot closely interacts with a person. 
By integrating our proposed method with existing systems, we 
might develop more accurate person identification systems 
under several situations, particularly in real environments. In 
this paper, we focused on developing a novel approach for 
person identification, not the integration of technologies; 
however, for future work, we will integrate our method with 
existing methods. 

 

D. Interaction from robot for person identification 
We did not evaluate the effects of interaction from the robot 

during playful interaction. Future work should consider such 
effects for person identification, because people who are 
interacting with the robot will change their behavior when it is 
talking or moving during interactions. The reaction of people 
toward interaction from a robot would include personal 
characteristics and differences with others; therefore, it would 
also be useful for person identification.  

 

E. Limitations 
We acknowledge other limitations. Our proposed method 

identified persons through playful interactions with 99.1% 
accuracy, but we did not compare its performances with other 
state-of-the-art time series classification algorithms, such as 
Support Vector Machine [23], an existing method that uses 
inertia sensors to identify environment [16], time series 
shapelets [24], and time series data mining [25]. Using these 
methods might increase performance and decrease the needed 
data length. 

This method can identify only one person because it assumes 
that a small robot interacts with only one person at a time. 
Moreover, winnowing candidates requires observation of a 
playful interaction within a certain time to find differences 
between individuals. Thus, if the length of interaction is shorter 
than the average time of needed data length, the performance of 
person identification will decrease. In other words, the method 
assumes a continuous playful interaction within a certain time 
period that is a relatively longer than the times of other types of 
person identification systems. 

Identification is conducted using an existing data set. 
Therefore, a registration process such as an interaction with a 
robot is needed beforehand. Such processes are also needed for 
other types of person identification such as 
face/fingerprint-based systems, but the proposed method needs 

more time for registration than these person-identification 
methods. 

We tested only adult participants with specific playful 
interaction patterns. Therefore, we might need to adjust the 
parameters or the sensor features to adapt our proposed method 
to other types of participants, such as children or senior citizens, 
and different kinds of interaction patterns in real-life settings.  

We evaluated our method in an experimental scenario, but it 
would be interesting to test whether other person identification 
methods, such as facial recognition, can identify interacting 
persons in the same scenario. This is also important for future 
integration between our proposed method and other methods, 
as discussed in Section VI-C. 

VII. CONCLUSION 
In this paper, we presented a novel method that identifies 

persons through playful interaction with a small robot. The 
unique concept of this work is its focus on the differences in 
extracted features from the inertial sensor data during playful 
interaction to identify the interacting person. This approach is 
different from related work that focused on eliminating 
individual differences to identify the interacting behavior. Our 
proposed method iteratively extracts features from the inertial 
sensor data history and narrows down the interacting person 
candidates during interaction to identify the person. We 
experimentally evaluated the performance of our proposed 
method, and our evaluation results showed that it identified 
persons through playful interactions with 99.1% accuracy. This 
work might be useful with various small robots, such as 
hobby-type robots. Person identification is an essential function 
for interacting with people, but it is physically difficult during 
close interactions. Our proposed method enables such robots to 
identify interacting persons during playful interactions.  
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